Читаем Собрание сочинений, том 20 полностью

Все, что мы узнаём у Гельмгольца о работе, сводится к тому, что она есть нечто, выражающееся в футо-фунтах или же в единицах теплоты, и что число этих футо-фунтов или единиц теплоты неизменно для определенного количества работы; далее, что, кроме механических сил и теплоты, работу могут производить также и химические и электрические силы, но что все эти силы исчерпывают свою способность к работе, по мере того как они действительно производят работу, и что отсюда следует, что сумма всех способных к действию количеств силы в мировом целом, при всех происходящих в природе изменениях, остается вечно и неизменно одной и той же. Понятие работы не развивается у Гельмгольца и даже не определяется им [Не лучших результатов мы добьемся у Клерка Максвелла. Этот последний говорит («Теория теплоты», 4 изд., Лондон, 1875, стр. 87): «Работа производится, когда преодолевается сопротивление», и (стр. 185) «энергия какого-нибудь тела — ото его способность производить работу»[325]. Это все, что мы узнаём у Максвелла насчет работы.]. И именно количественная неизменность величины работы мешает ему видеть то, что основным условием всякой физической работы является качественное изменение, перемена формы. Поэтому-то Гельмгольц и договаривается до утверждения, что

«трение и неупругий удар — это процессы, при которых уничтожается механическая работа [Подчеркнуто Энгельсом. Ред.] и взамен нее порождается теплота» («Популярные доклады», вып. II, стр. 166).

Совсем наоборот. Здесь механическая работа не уничтожается, здесь производится механическая работа. Механическое движение — вот что здесь по видимости уничтожается. Но механическое движение нигде и никогда не может произвести работу хотя бы на одну миллионную часть килограммометра, если оно не будет по видимости уничтожено как таковое, если оно не превратится в какую-нибудь другую форму движения.

Способность же к работе, заключающаяся в определенном количестве механического движения, называется, как мы видели, его живой силой, и до недавнего времени она измерялась через mv2

. Но здесь возникло новое противоречие. Послушаем Гельмгольца («Сохранение силы», стр. 9). У него говорится, что величина работы может быть выражена через груз т, поднятый на высоту h; если затем выразить силу тяжести через g, то величина работы равняется mgh. Чтобы масса m могла свободно подняться перпендикулярно вверх на высоту h, ей необходима скорость v=V2gh, скорость, которую она снова приобретает при падении с той же самой высоты вниз.

Следовательно, mgh

= mv2/2. И Гельмгольц предлагает

«как раз величину 1/2mv2обозначать как количество живой силы, благодаря чему она становится тождественной с мерой величины работы. С точки зрения того, как до сих пор применялось понятие живой силы... это изменение не имеет значения, между тем как нам оно доставит в дальнейшем существенные выгоды».

Мы с трудом верим своим глазам. Гельмгольц в 1847 г. так мало отдавал себе отчет в вопросе о взаимоотношении между живой силой и работой, что он даже совсем не замечает, как он прежнюю пропорциональную меру живой силы превращает в ее абсолютную меру, и совершенно не сознает того, какое важное открытие он сделал своим смелым приемом: свое mv2/2 он рекомендует только из соображений удобства этого выражения по сравнению с mv2

! И из этих соображений удобства механики дали право гражданства выражению mv2/2. Лишь постепенно mv2/2 было доказано также и математически: алгебраическое доказательство находится у Наумана, «Общая химия», стр. 7[326], аналитическое у Клаузиуса, «Механическая теория теплоты», 2 изд., т. I,
стр. 18[327], которое затем встречается в ином виде и иной дедукции у Кирхгофа (цит. соч., стр. 27).

Изящный алгебраический вывод mv2/2 из mv дает Клерк Максвелл (цит. соч., стр. 88). Все это не мешает нашим двум шотландцам, Томсону и Тейту, утверждать (цит. соч., стр. 163):

«Живая сила, или кинетическая энергия, движущегося тела пропорциональна его массе и вместе с тем квадрату его скорости. Если мы примем те же самые единицы массы (и скорости], что и выше» (а именно, «единицу массы, движущейся с единицей скорости»), «то очень выгодно определить кинетическую энергию как полупроизведение массы на квадрат скорости».

Здесь, стало быть, обоим первым механикам Шотландии изменило не только мышление, но и способность к вычислениям. Выгодность, удобство формулы, является решающим аргументом.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже