122. Но прежде чем подвергнуть этот предмет более специальному рассмотрению, я нахожу уместным разобрать абстрактное протяжение. Ибо о нем говорят много; и я склонен думать, что когда говорят о протяжении как об идее, общей двум чувствам, то при этом тайно предполагается, что мы можем абстрагировать протяжение от всех других осязаемых и видимых качеств и образовывать о нем абстрактную идею, которая будет общей как для зрения, так и для осязания. Поэтому мы должны при помощи абстрактного протяжения понять идею протяжения, например, линию или поверхность, совершенно лишенную всех других ощущаемых качеств и взятую вне тех условий, которые определяют ее в каждом частном случае; она ни черна, ни бела, ни красна, вообще не имеет никакого цвета и никакого осязаемого качества и, следовательно, не имеет конечной определенной величины, ибо то, что ограничивает, определяет одно протяжение от другого, есть некоторое качество или обстоятельство, в котором они разнятся [14].
123. и вот я не нахожу, чтобы я мог воспринимать, воображать или каким-нибудь иным способом создавать в уме такую абстрактную идею, как та, о которой здесь говорится. Линия или поверхность, которая ни черная, ни белая, ни синяя, ни желтая и пр.; ни длинная, ни короткая, ни шероховатая, ни гладкая, ни четырехугодьная, ни круглая и пр., — такая линия совершенно непонятна. Поскольку дело касается меня самого, для меня это несомненно; как далеко могут простираться способности других людей, это лучше знать им самим.
74
124. Обыкновенно говорят, что объектом геометрии является абстрактное протяжение. Но геометрия рассматривает фигуры, а фигура есть следствие величины; мы же показали, что абстрактное протяжение не имеет конечной определенной величины; отсюда с очевидностью следует, что оно не может иметь никакой фигуры и, следовательно, не есть объект геометрии. В самом деле, как новые, так и древние философы полагают, что все общие истины относятся к универсальным абстрактным идеям, без которых (говорят они нам) не может быть никакого знания, не может быть доказано в геометрии никакое общее предложение. Но было бы не трудно, если бы я считал это нужным для моей настоящей цели, доказать, что предложения и доказательства в геометрии могут быть универсальными, хотя те, которые их образуют, никогда не имеют в мыслях абстрактных общих идей треугольников или кругов.
125. После неоднократных попыток постигнуть общую идею треугольника, я нашел, что она совершенно непонятна. И, конечно, если бы кто-нибудь был бы в состоянии ввести эту идею в мой дух, то это должен был бы сделать автор «Опыта о человеческом разуме», так как он столь сильно выделяется среди большинства писателей ясностью и силой выражения своих мыслей. Итак, посмотрим, как этот знаменитый автор описывает общую, или абстрактную, идею треугольника: «...она не должна быть идеей ни косоугольного, ни прямоугольного, ни равностороннего, ни равнобедренного, ни неравностороннего треугольников; она должна быть всем и ничем в одно и то же время. На деле она есть нечто несовершенное, что не может существовать, идея, в которой соединены части нескольких различных и несовместимых друг с другом идей» («Опыт о чел[овеческом] разум[е]», кн. IV, гл. 7, § 9 [15]). Такова идея, которую он считает необходимой для расширения нашего знания, которая служит предметом математического доказательства и без которой мы не могли бы никогда достигнуть познания какого-либо общего предложения относительно треугольников. Я уверен, что если бы дело обстояло таким образом, то для меня было бы невозможно достигнуть познания даже самых первых элементов геометрии, ибо я не способен создать в своем уме такую идею, которая здесь описана. Наш автор говорит: «...разве не нужны усилия и способности, чтобы составить общую идею треугольника?» (ibid.). Но если бы он вспомнил то, что он говорит в другом месте, а именно: «...если в состав моих
75