Следует отметить также, что значение ширины запрещенной зоны, определенное при измерениях оптического поглощения, зависит в значительной степени от концентрации свободных носителей заряда в полупроводнике, температуры и наличия в запрещенной зоне примесных уровней. Если состояния вблизи дна зоны проводимости и потолка валентной зоны заполнены носителями заряда, то оптические измерения дадут для ширины запрещенной зоны примесного полупроводника значения более высокие, чем для чистого собственного полупроводника. Если примесная зона слилась с краем ближайшей разрешенной зоны, что может произойти при сильном легировании, то ширина запрещенной зоны уменьшится. Сужение
Коэффициент поглощения полупроводника а определяется условием, что энергия волны уменьшается в
где
Коэффициент поглощения а материала связан с его показателем поглощения
На рис. 2.1 представлены зависимости коэффициента поглощения
Столь очевидные отличия спектральных зависимостей коэффициента поглощения рассматриваемых полупроводниковых материалов объясняются различием в их зонной структуре и характере оптических переходов. В арсениде галлия (так же как в теллуриде кадмия и фосфиде индия) осуществляются сразу прямые оптические переходы зона— зона: поглощение резко увеличивается при появлении в спектре излучения фотонов с энергией, превосходящей ширину их запрещенной зоны, и коэффициент поглощения а быстро достигает значений 104
—105 см-1. Поглощение в кремнии (в основной полосе) начинается с непрямых переходов при 1,1 эВ с участием как квантов света, так и квантов колебаний решетки — фононов, коэффициент поглощения растет сравнительно медленно (до значений 103—104 cм-1)× Только при энергии фотонов около 2,5 эВ переходы зона — зона становятся прямыми: поглощение резко возрастает.Для германия также характерны непрямые оптические переходы, начинающиеся при 0,62 эВ (коэффициент поглощения от 1 до 102
см-1), и только при энергии фотонов более 0,81 эВ основное поглощение определяется прямыми переходами.Следует отметить, что значения термической ширины запрещенной зоны полупроводников, рассчитываемых по рассмотренной выше температурной зависимости электропроводности, близки, как правило, к значениям оптической ширины запрещенной зоны, определяемым краем основной полосы поглощения, совпадающим с началом непрямых оптических переходов зона — зона.
Спектральные зависимости коэффициента поглощения (см. рис. 2.1) показывают, что, применяя кремний, можно использовать для преобразования в электрический ток большую часть солнечного спектра (излучение с длиной волны 1,1 мкм и короче), т. е. более 74 % энергии внеатмосферного солнечного излучения. Для арсенида же галлия фотоактивным (способным перебросить электроны через запрещенную зону) является излучение с длиной волны 0,9 мкм и менее, и в силу только этого ограничения лишь 63 % энергии Солнца во внеатмосферных условиях может быть преобразовано в электрическую. Однако из-за непрямых оптических переходов и малых значений коэффициента поглощения в области края основной полосы поглощения толщина кремниевого солнечного элемента, поглощающего все фотоактивное излучение, должна быть не менее 250 мкм, в то время как аналогичная толщина солнечного элемента из арсенида галлия может составлять не более 2–5 мкм. Эту особенность спектральных характеристик поглощения необходимо учитывать при разработке высокоэффективных и дешевых тонкопленочных солнечных элементов.