Читаем Солнечные элементы полностью

Следует отметить также, что значение ширины запрещенной зоны, определенное при измерениях оптического поглощения, зависит в значительной степени от концентрации свободных носителей заряда в полупроводнике, температуры и наличия в запрещенной зоне примесных уровней. Если состояния вблизи дна зоны проводимости и потолка валентной зоны заполнены носителями заряда, то оптические измерения дадут для ширины запрещенной зоны примесного полупроводника значения более высокие, чем для чистого собственного полупроводника. Если примесная зона слилась с краем ближайшей разрешенной зоны, что может произойти при сильном легировании, то ширина запрещенной зоны уменьшится. Сужение Eg заметно скажется на положении края основной полосы поглощения (он сдвинется в более длинноволновую область)[2].

Коэффициент поглощения полупроводника а определяется условием, что энергия волны уменьшается в е раз на расстоянии, равном 1/α:

Ni=N

0exp(-αl),

где Ni — плотность потока прошедших в полупроводник фотонов на глубине l; N0 - плотность потока фотонов, пересекающих поверхность полупроводника (после отражения части света от поверхности).



Рис. 2.1. Зависимости коэффициента поглощения монокристаллов кремния (1), теллурида кадмия (2), арсенида галлия (3) и фосфида индия (4) от длины волны падающего излучения при комнатной температуре


Коэффициент поглощения а материала связан с его показателем поглощения k соотношением α=4πkλ. Таким образом, измеряя интенсивность оптического излучения, прошедшего через полупроводниковые образцы различной точно измеренной толщины, можно определить значения k и α данного вещества.

На рис. 2.1 представлены зависимости коэффициента поглощения а от энергии фотонов падающего излучения двух наиболее часто используемых в полупроводниковой фотоэнергетике материалов — кремния и арсенида галлия, а также двух других перспективных материалов — теллурида кадмия и фосфида индия. Именно из этих материалов получены наиболее эффективные современные солнечные элементы. На рис. 2.1 результаты измерений приводятся для монокристаллических полупроводниковых материалов при комнатной температуре.

Столь очевидные отличия спектральных зависимостей коэффициента поглощения рассматриваемых полупроводниковых материалов объясняются различием в их зонной структуре и характере оптических переходов. В арсениде галлия (так же как в теллуриде кадмия и фосфиде индия) осуществляются сразу прямые оптические переходы зона— зона: поглощение резко увеличивается при появлении в спектре излучения фотонов с энергией, превосходящей ширину их запрещенной зоны, и коэффициент поглощения а быстро достигает значений 104—105 см-1. Поглощение в кремнии (в основной полосе) начинается с непрямых переходов при 1,1 эВ с участием как квантов света, так и квантов колебаний решетки — фононов, коэффициент поглощения растет сравнительно медленно (до значений 103

—104-1)× Только при энергии фотонов около 2,5 эВ переходы зона — зона становятся прямыми: поглощение резко возрастает.

Для германия также характерны непрямые оптические переходы, начинающиеся при 0,62 эВ (коэффициент поглощения от 1 до 102 см-1), и только при энергии фотонов более 0,81 эВ основное поглощение определяется прямыми переходами.

Следует отметить, что значения термической ширины запрещенной зоны полупроводников, рассчитываемых по рассмотренной выше температурной зависимости электропроводности, близки, как правило, к значениям оптической ширины запрещенной зоны, определяемым краем основной полосы поглощения, совпадающим с началом непрямых оптических переходов зона — зона.

Спектральные зависимости коэффициента поглощения (см. рис. 2.1) показывают, что, применяя кремний, можно использовать для преобразования в электрический ток большую часть солнечного спектра (излучение с длиной волны 1,1 мкм и короче), т. е. более 74 % энергии внеатмосферного солнечного излучения. Для арсенида же галлия фотоактивным (способным перебросить электроны через запрещенную зону) является излучение с длиной волны 0,9 мкм и менее, и в силу только этого ограничения лишь 63 % энергии Солнца во внеатмосферных условиях может быть преобразовано в электрическую. Однако из-за непрямых оптических переходов и малых значений коэффициента поглощения в области края основной полосы поглощения толщина кремниевого солнечного элемента, поглощающего все фотоактивное излучение, должна быть не менее 250 мкм, в то время как аналогичная толщина солнечного элемента из арсенида галлия может составлять не более 2–5 мкм. Эту особенность спектральных характеристик поглощения необходимо учитывать при разработке высокоэффективных и дешевых тонкопленочных солнечных элементов.

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки