Читаем Солнечные элементы полностью

На основные фотоэлектрические параметры солнечных элементов, такие, как вольт-амперная характеристика и спектральная чувствительность, влияют и оптические, и электрофизические свойства полупроводника. Лишь детальный анализ позволяет определить, чем вызвана недостаточно высокая эффективность данного солнечного элемента. Однако для этого прежде всего необходимо измерить основные его характеристики, что дает возможность понять причины возникновения, природу и преобладающий вид потерь.

Уже в первых работах, посвященных теории и экспериментальному изучению свойств солнечных элементов, было показано, что вольт-амперная характеристика солнечного элемента отличается от вольт-амперной характеристики полупроводникового диода появлением члена Iф, обозначающего собой ток, генерируемый элементом под действием освещения, часть которого Iд течет через диод, а другая часть I — через внешнюю нагрузку:

Iф=Iπ+I

где

Iд=I0(exp(qU/KT) -1) —

обычная темновая характеристика, в которой I0 обратный ток насыщения p-n-перехода; q — заряд электрона; T — абсолютная температура, К — постоянная Больцмана; U — напряжение. При разомкнутой внешней цепи, когда ее сопротивление бесконечно велико и I=0, из приведенных уравнений можно определить напряжение холостого хода солнечного элемента:

Ux.

x=ln(Iд/I0+1)KT/q.

Для реального солнечного элемента характерно наличие последовательного сопротивления контактных слоев, сопротивлений каждой из р- и n-областей элемента, переходных сопротивлений металл — полупроводник, а также шунтирующего сопротивления Rш, отражающего возможные поверхностные и объемные утечки тока по сопротивлению, параллельному p-n-переходу. Учет этих сопротивлений и рекомбинации в p-n-переходе приводит к развернутому выражению для вольт-амперной характеристики:

ln(I+Iф/i0 - U-IRп /I0Rш+1) = q/AKT(U-IRп).

В уравнение введен коэффициент А, отражающий степень приближения параметров реального прибора к характеристикам идеального.

Это уравнение можно записать в более удобном для практического использования виде:

I= Iф-I0(exp q(U+IRп/АКТ)-1) U+ IRn∕ Rш

что позволяет построить эквивалентную и измерительную схемы солнечного элемента (рис. 2.8).

Расчет вольт-амперных характеристик по последней формуле позволил наглядно представить влияние последовательного и шунтирующего сопротивлений на свойства солнечного элемента. Результаты этих расчетов приведены на рис. 2.9. Выходная мощность Р, снимаемая с 1 см2 солнечного элемента, может быть оценена из соотношений

P=(IнUн)max=ξIK.3Ux.x,

где величина ξ, называемая коэффициентом заполнения вольт-амперной характеристики, показывает степень приближения формы вольт-амперной характеристики к прямоугольной: ζ≃0,8–0,9 означает получение элементов с высокой выходной мощностью. У современных кремниевых солнечных элементов коэффициент ζ обычно составляет 0,75—0,8. Уменьшение шунтирующего сопротивления от бесконечно большого до столь малого, как 100 Ом, сравнительно мало влияет на форму вольт-амперной характеристики (см. рис. 2.9) и, следовательно, на выходную мощность солнечного элемента. В то же время небольшие изменения последовательного сопротивления, например от 1 до 5 Ом, приводят к резкому ухудшению формы вольт-амперной характеристики и значительному снижению выходной мощности.



Рис. 2.8. Эквивалентная (а) и измерительная (б) электрические схемы солнечного элемента



Рис. 2.9. Расчетные вольт-амперные характеристики солнечных элементов для различных сочетаний Rп и Rш (а) и для разных Rп при Rш = ∞ (б) Iф = 0,1 А; I0 = 10-9 A; q/kT = 40 В-1)

1 — Rп = 5 Ом, Rш

= 100; 2 — Rп = 5, Rш = ∞; 3 — Rп = 0, Rш = ∞, 4 — Rп = 0, Rш = ∞; 5—11 — Rп = 0; 1; 2; 3,5; 5; 10 и 20 Ом соответственно


Как световая, так и темновая вольт-амперные характеристики солнечного элемента могут быть исследованы еще более детально. При этом для ряда элементов часто обнаруживается, что в зависимости от уровня напряжения механизм протекания обратного тока насыщения через p-n-переход меняется. Как правило, этот ток представляет сумму двух токов. В связи с этим предложено записывать уравнение вольт-амперной характеристики солнечного элемента в следующем виде:

I = I01(exp (q/AKT U) -1)+ I02(exp q/AKT U -1) — Iф,

где Io1 обратный ток насыщения, определяемый диффузионным механизмом протекания тока через тонкий p-n-переход; I02 — обратный ток насыщения, возникающий вследствие рекомбинации в области p-n-перехода, при этом обычно коэффициент А=2.

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки