Читаем Солнечные элементы полностью

Имеются направления усовершенствования параметров, характерные и специфичные именно для солнечных элементов данного типа. Например, замена слоя Cu2S слоем InP или CuInSe2 приводит к значительному увеличению коэффициента собирания, уменьшение плотности состояний в области гетероперехода (постоянные кристаллической решетки сульфида кадмия и этих материалов весьма близки), а при использовании вместо сульфида меди теллурида хрома удается существенно улучшить стабильность характеристик тонкопленочных элементов во времени, хотя, конечно, основную роль в увеличении срока службы таких элементов при длительной эксплуатации играет применение многослойных просветляющих и защитных покрытий. Для увеличения производительности процесса получения слоя сульфида кадмия и его удешевления успешно используется вместо испарения в квазизамкнутом объеме метод химической пульверизации на воздухе или нанесение с помощью газотранспортных реакций.

Электрофизические и оптические свойства большого числа гетеросистем на основе полупроводниковых соединений AIISvi, предложенных для создания тонкопленочных солнечных элементов, таких, как p-ZnTe — п-CdSe, p-ZnTe — n-CdTe, p-CdTe —

n-CdS, p-CdTe — п-ZnSe, p-CdTe — n-CdZnS и др., достаточно подробно описаны в ряде опубликованных работ. У солнечных элементов на основе этих систем КПД пока еще ниже, чем у гетеросистемы сульфид меди — сульфид кадмия, однако некоторые из них, например солнечные элементы структуры p-CdTe — n-CdS, привлекают внимание низким температурным градиентом падения мощности и стабильностью характеристик.

Высокий КПД (16 % для условий AM0) получен советскими и зарубежными исследователями в комбинированной монокристаллическо-тонкопленочной гетероструктуре, образованной соединениями A111Bv и A11Bvi

, нанесенными в такой последовательности: на монокристаллической подложке из фосфида индия создается эпитаксиальный слой того же материала, на который затем напыляется пленка сульфида кадмия в квазизамкнутом объеме в вакууме. Широкому использованию таких солнечных элементов препятствует высокая стоимость фосфида индия.

Существуют планы крупномасштабного применения тонкопленочных элементов гетеросистемы сульфид меди — сульфид кадмия и ее модификаций в наземной солнечной энергетике, но в настоящее время эти элементы применяют на практике в основном как малогабаритные и очень чувствительные детекторы ультрафиолетового и видимого излучения Солнца и искусственных источников света (рис. 4.8).



Рис. 4.8. Спектральная чувствительность фронтально-барьерных солнечных элементов, полученных испарением в вакууме слоя селенида (1) и сульфида (2–6) меди на базовые слои из различных полупроводниковых соединении

1, 2 — CdS; 3 — Zn0,1Cd0,9S; 4 — Zn0,15Gd0,85S; 5 — Zn

0,4Cd0,6S; 6 — ZnS


Солнечные элементы из арсенида галлия

с гомо- и гетеропереходами

К арсениду галлия с середины 50-х годов, когда начались активные исследования в области фотоэлектричества, привлечено внимание большого числа ученых и инженеров, поскольку в солнечных элементах из этого полупроводникового материала с гомогенным p-n-переходом сразу удалось получить достаточно высокий КПД преобразования солнечного излучения в электроэнергию (η=4÷6 %). Создание p-n-перехода осуществлялось диффузией примеси р-типа — кадмия (впоследствии цинка) — в исходные пластины n-типа.

Несмотря на некоторые недостатки (хрупкость, большая плотность), у арсенида галлия имеются несомненные преимущества перед кремнием. В силу большой ширины запрещенной зоны способность арсенида галлия преобразовывать длинноволновое солнечное излучение ограничена (арсенид галлия поглощает излучение с длиной волны менее 0,9 мкм). Однако это же обстоятельство приводит к существенно меньшим значениям обратного тока насыщения Io=10-9

÷10-1°A∕cм2 (в то время как у солнечных элементов из кремния I0=10-6÷10-7 А/см2), что, в свою очередь, дало возможность в настоящее время получить большие, чем у кремниевых солнечных элементов, значения напряжения холостого хода Ux.x (0,7–0,8 В для p-n-перехода в гомогенном материале) и достаточно высокий КПД даже для серийно выпускаемых элементов (10–12 % при измерениях на имитаторах внеатмосферного солнечного излучения). Эти же особенности данного полупроводникового материала обусловливают значительно более медленное падение КПД с ростом температуры, составляющее у солнечных элементов из арсенида галлия 0,25 %/oC (у кремниевых элементов 0,45—0,46 %/°C).

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки