Читаем Солнечные элементы полностью

1 — без покрытия; 2 — SiO (d = 0,15 мкм); 3 — ZnS (d = 0,15 мкм) + кремнийорганический лак (l = 50 мкм); 4 — ZnS (d = 0,15 мкм) + кремнийорганический каучук + стеклянная пластина (l = 0,5 мм); 5 — идеальное охлаждающее


Измерения спектральной чувствительности и нагрузочной вольт-амперной характеристики (под имитатором солнечного излучения с плотностью потока E=1360 Вт/м2

) кремниевых солнечных элементов с полированной поверхностью до и после нанесения трехслойного покрытия, состоящего из просветляющего слоя ZnS (d=0,15 мкм), клеящего слоя кремнийорганического каучука и защитной стеклянной пластины, показали, что трехслойные покрытия вследствие своих просветляющих качеств позволяют увеличить Iκз
и КПД солнечных элементов на 40–42 %. Длительное воздействие ультрафиолетового излучения Солнца в вакууме, равное по интенсивности пребыванию на внеатмосферном Солнце в течение многих сотен и тысяч часов, весьма слабо сказывается на оптических свойствах трехслойного покрытия — характеристики элементов почти не изменились после испытаний. Испытания на стойкость к термоперепаду в вакууме в интервале от +100 до -100 °C с выдержкой более 1 ч при каждом из крайних значений температуры показали, что оптические и механические свойства трехслойного покрытия сохраняются при толщине защитных стеклянных пластин 0,15—3 мм. Благодаря высокому коэффициенту излучения стекла (ε=0,9) трехслойное покрытие обладает хорошими теплорегулирующими свойствами и позволяет стабилизировать рабочую температуру солнечных элементов на уровне 65–70 °C. Дополнительным преимуществом трехслойных покрытий с внешним слоем стекла является защита солнечных элементов от механических воздействий, например микрометеоритов в космических условиях и песчаных частиц в пустынях.

Спектральное распределение коэффициента отражения полированной приемной поверхности кремниевых солнечных элементов до и после нанесения защитных и теплорегулирующих покрытий представлено на рис. 5.4, где в области солнечного спектра (0,2–3 мкм) использована «деформированная» шкала λ, отражающая распределение солнечной энергии по спектральным интервалам, в остальной части спектра шкала λ равномерна. Кривые 1–4 на рис. 5.4 получены для солнечных элементов, непрозрачных во всем исследуемом интервале спектра вследствие того, что их темновая нерабочая сторона полностью покрыта металлическим контактом, образованным химическим осаждением никеля или вакуумным испарением титана на предварительно шлифованную поверхность кремния. Если коэффициент излучения ε благодаря двуслойным или трехслойным покрытиям почти достигает уровня ε черного тела, то получить теоретически возможное (без уменьшения КПД) низкое значение αc

=0,66 указанные покрытия не позволяют (см. рис. 5.4). Основной причиной этого является невысокое отражение в области 1,1–3 мкм, на которую приходится около 26 % энергии падающего солнечного излучения. Уменьшение интегрального коэффициента поглощения солнечного излучения αc со значения 0,92, характерного для обычных солнечных элементов, до 0,66 (что можно сделать, не ухудшая КПД и спектральной чувствительности) было бы весьма заманчиво, ибо равновесная рабочая температура элементов при этом снизилась бы на -20° в условиях исключительно радиационного теплообмена с окружающей средой.

Несмотря на сложность и трудоемкость такого решения, для защиты от ультрафиолетового излучения и уменьшения αc в ряде зарубежных работ было предложено наносить на внутреннюю поверхность стеклянных пластин, приклеиваемых к внешней поверхности солнечных элементов из кремния или арсенида Галлия, интерференционный фильтр, состоящий из 38, 41, 58 слоев. Однако высокое отражение в области солнечного спектра достигается при этом только в интервале 1,1–1,8 мкм, причем оптические свойства фильтров подвержены значительным изменениям при облучении ультрафиолетовым излучением и ядерными частицами.

Для солнечных элементов из кремния и арсенида галлия с тонким диффузионным слоем существует, как впервые было показано советскими учеными, еще одна возможность уменьшения их радиационного перегрева — пропускание солнечного излучения в области 1,1–3 мкм сквозь элемент.

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки