Читаем Солнечные элементы полностью

Для оценки аэрозольного рассеяния пользуются понятием «мутность атмосферы». Прямой солнечный поток, ослабленный в результате аэрозольного рассеяния, можно определить по формуле

τα=exp(-βλm),

где β — коэффициент мутности; α — коэффициент, который называют показателем селективности.

Коэффициент мутности характеризует количество взвешенных в воздухе частиц, показатель селективности — состав частиц по размерам: чем мельче частицы, тем выше α и тем большая часть излучения ослабляется в ультрафиолетовой и голубой областях спектра. Предполагается, что для различных атмосферных условий коэффициент α изменяет свое значение от 0,8 до 2, а коэффициент β — от 0,01 до 0,375.

При выводе обобщающей формулы, учитывающей все виды потерь солнечного излучения в процессе прохождения сквозь земную атмосферу, предполагалось, что спектральная плотность потока наземного излучения Солнца в узком интервале длин волн Eλ зависит от спектрального потока внеатмосферного излучения Eв этом интервале следующим образом:

Eλ=E exp(-(c1+c2+c3)m)Tλi,

где c1, C2

и c3=βλ — изменение длины оптического пути соответственно из-за рэлеевского рассеяния, наличия слоя озона и запыленности воздуха; Tki — коэффициент, учитывающий уменьшение прозрачности атмосферы вследствие полос молекулярного поглощения, который может быть выражен (в зависимости от спектрального положения полосы) с помощью одного из соотношений:

Tλ1=exp(-c4(ωm)½), Tλ2=exp(-c

5ωm), Tλ3=1-c6m½

где c4-c6 — эмпирические константы.

В настоящее время разработаны различные модели атмосферы, с использованием которых можно рассчитывать на ЭВМ оптическое пропускание земной атмосферы по отношению к солнечному излучению.

C 1974–1975 гг. в странах, разрабатывающих солнечные элементы и батареи, начались активные исследования по выбору стандартного спектра наземного солнечного излучения применительно к измерению их параметров. Сначала был предложен стандартный солнечный спектр, соответствующий атмосферной массе m =

1, основанный, в свою очередь, на расчетах, в которых в качестве исходного спектра внеатмосферного излучения использовалось распределение Ф. Джонсона, при следующих условиях: слой осажденных паров воды 1,0 см, озона 3,5 мм при 200 аэрозольных частицах пыли в кубическом сантиметре воздуха. Суммарный поток такого стандартного наземного солнечного излучения (обычно обозначаемый как солнечное излучение для условий AM1) 917 Вт/м2, прямая составляющая этого излучения равна 865 Вт/м2.

Следует отметить, что условия, близкие к AM1, наблюдаются практически только в тропиках и на средних широтах в высокогорье. В связи с этим были продолжены работы по выбору стандартного спектра и оптимальных методов измерения, наиболее полно отражающих условия эксплуатации большинства наземных фотоэлектрических установок,

В 1975 г. в США была разработана временная методика испытаний солнечных элементов наземного назначения, предусматривающая три способа измерений: на естественном солнечном излучении с использованием эталонных солнечных элементов, с применением неселективных радиометров и на солнечных имитаторах. В методике описываются приборы и оборудование, необходимые для проведения испытаний, рекомендуются способы градуировки эталонных элементов. В качестве стандартных предложены условия облучения при атмосферной массе т=2 и следующих параметрах атмосферы: толщина слоя осажденных паров воды 2,0 см, озона 3,4 мм; коэффициент мутности β=0,04; показатель селективности при аэрозольном поглощении α=1,3 (такой спектр наземного излучения обозначается как условия АМ2). Спектральное распределение энергии солнечного излучения при стандартных условиях получено расчетным путем на основе спектра внеатмосферного излучения, выведенного Μ. П. Такаекарой. В качестве стандартной принята температура 28±2o С.

Однако условия АМ2 тоже недостаточно точно соответствуют средним условиям работы наземных солнечных элементов и батарей, особенно летом в южных районах. В связи с этим временная методика была переработана. В усовершенствованной методике в качестве стандарта приняты условия, соответствующие атмосферной массе m=1,5 (обозначаемые как условия AM1,5). Считается, что толщина слоя осажденных паров воды составляет 2,0 см, озона — 3,4 мм, коэффициент мутности β=0,12 и показатель селективности α=1,3. Плотность прямого потока в спектре AM1,5 равна 834,6 Вт/м2. Этот спектр представлен кривой 3 на рис. 1.1 и приведен в табл. 2 Приложения.

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки