Читаем Солнечные элементы полностью

Концентраторы можно классифицировать также по числу применяемых ступеней собирания. На рис. 5.11 показаны два концентратора, имеющих две ступени собирания. В одной, известной также как система Кассегрена (названа по системе телескопа аналогичной конструкции), для собирания света используются два зеркала. Третий отражатель, не рассматриваемый как самостоятельная ступень собирания, служит для отведения в сторону размытых пучков, образующихся при отражении от несовершенной части оптической поверхности, например, образовавшихся при неточной установке оптической оси системы в направлении на Солнце. В других двухступенчатых системах используются для отражения одна внешняя и одна внутренняя поверхности. Внутреннее отражение, известное также как полное отражение, происходит, когда луч света пытается выйти из среды с высоким показателем преломления в среду с более низким показателем преломления, причем угол падения света иа границу двух сред достаточно большой.



Рис. 5.11. Двухступенчатые концентраторы типа Кассегрена (а) и Баранова — Уинстона (б)

1 — солнечные лучи;

2 — зеркало для сбора первичного пучка света;

3 — зеркало, отражающее вторичный пучок света;

4 — вторая ступень концентрации света (а — зеркало, б — волоконно-оптический элемент из стекла или пластика);

5 — солнечный элемент


В концентраторах солнечного света, в которых используется принцип преобразования длин волн, поступающая энергия внутри достаточно широкой полосы спектра Солнца преобразуется в энергию излучения узкого интервала длин волн, соответствующего наиболее высокой спектральной чувствительности солнечного элемента. Этот интервал длин волн, как правило, расположен вблизи красной границы фотоэффекта для данного полупроводникового материала, определяемой шириной его запрещенной зоны.

Преобразование длины волны излучения, падающего на батарею или элементы, может быть обеспечено, например, с помощью селективных излучателей или пленочного люминофора. Поверхность селективных излучателей покрывается материалом, способным испускать излучение в узком диапазоне длин волн, причем нагрев излучателя осуществляется с помощью концентратора солнечного света; диапазон длин волн, испускаемых селективным излучателем, как правило, выбирается вблизи энергии запрещенной зоны полупроводникового материала, из которого изготовлен солнечный элемент.

Активно исследуются фотолюминесцентные солнечные концентраторы, называемые также плоскопараллельными или плоскими концентраторами.

Солнечный свет, который падает на плоскую пластину, покрытую слоем люминофора, поглощается им. В процессе поглощения света падающие фотоны возбуждают молекулы люминофора (в этом качестве могут быть использованы и многие органические красители). При этом возникает новое излучение, но уже с другой длиной волны, характерной для данного люминофора. Переизлученная энергия остается внутри плоской пластины благодаря внутреннему отражению и после многократного отражения от плоских отражающих стенок попадает на солнечные элементы, установленные по периметру плоского прямоугольного концентратора.

Исследование процессов деградации параметров солнечных элементов и методы их стабилизации

Исходные характеристики солнечных элементов могут, к сожалению, заметно ухудшаться в процессе эксплуатации.

Повышение температуры приводит, как правило, к росту фототока и падению ЭДС, выходной мощности и КПД солнечных элементов, причем градиент падения мощности зависит от природы полупроводникового материала — для широкозонных материалов он мал, для узкозонных велик. У кремниевых солнечных элементов с повышением температуры на 100o C мощность, генерируемая ими, падает на 45 %, а у солнечных элементов на основе арсенида галлия — на 25 % (напомним, что ширина запрещенной зоны кремния составляет 1,02 эВ, арсенида галлия — 1,43 эВ).

Увеличение плотности падающего потока излучения в несколько раз может также привести к резкому уменьшению выходной мощности солнечных элементов, если последовательное сопротивление элементов сравнительно велико — около 1 Ом×см2. Последовательное сопротивление обычных солнечных элементов составляет 0,5–0,6 Ом см2, и их можно применять (без ухудшения электрических характеристик) в условиях 5—7-кратного увеличения плотности потока солнечного излучения, характерного для наземных условий средней полосы СССР (обычно 400–800 Вт/м2).

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки