Современная солнечная батарея состоит из нескольких фотоэлектрических солнечных модулей. Основной материал для изготовления фотоэлектрических элементов – кремний. Кремний с примесью фосфора относится к полупроводнику типа п, с примесью бора – типа p. Когда в зону соприкосновения двух полупроводников попадает солнечная радиация, создается электродвижущая сила, которая может перемещать электрический ток во внешнем контуре, подключенном к n– и p-областям (рис. 2.31).
Рис. 2.31. Устройство и принцип действия кремниевого фотоэлектрического элемента
Солнечный модуль состоит из нескольких пластин монокристаллического кремния, закрепленных на каркасе и покрытых специальным стеклом. Элементы модуля, соединенные электрически, являются базовой основой солнечных модулей. Модули способны вырабатывать электрическую энергию, необходимую для питания бытовых электроустройств, а также могут быть использованы как базовые элементы больших энергосистем.
В зависимости от предназначения солнечные модули могут иметь различные конструктивные решения и разные выходные мощности. Например, компания "ЛМВ ветроэнергетика" выпускает три серии солнечных модулей:
• солнечные модули в алюминиевом каркасе – серия MSW, 32 типа в диапазоне мощностей от 3 до 120 Вт;
• бескаркасные солнечные модули – серия "Лира", 16 типов в диапазоне мощностей от 1,7 до 24 Вт;
• солнечные модули на металле – серия MSWm, 16 типов в диапазоне мощностей от 1,7 до 24 Вт.
При подсоединении в параллельные или последовательные цепи большого количества фотоэлементов можно получить приемлемые значения напряжения и силы тока, несмотря на относительно небольшой КПД, не превышающий 24 %. Солнечные модули из отдельных полупроводниковых кремниевых элементов размещают обычно на крыше жилого дома. Толщина пластинки кремния не превышает 0,2–0,3 мм. При покупке солнечного модуля необходимо знать, что 1 м2 пластинки кремниевого элемента дает напряжение 0,5 В, если нагрузка составляет 1 кВт м2. Средний КПД солнечной батареи около 14 %, а срок службы 25 лет. К достоинствам солнечных панелей можно отнести механическую простоту (отсутствие движущихся частей), бесшумность и отсутствие загрязнения окружающей среды. Солнечные энергетические установки бывают двух видов: установки автономного энергоснабжения и установки, отдающие излишки генерации в центральную сеть. В последнем случае можно накапливать электроэнергию в аккумуляторных батареях и через инвертор преобразовывать в напряжение 220 В для подключения стандартных бытовых приборов.
2.8.3. Система электроснабжения на солнечных батареях
При создании системы электроснабжения на солнечных батареях для загородного дома, как и в случае с ветроэнергетическими установками, возможны различные варианты. Одна схема автономного электроснабжения может быть построена с наличием низковольтной сети постоянного тока с напряжением 12 В для освещения (рис. 2.32). При этом загородный дом оборудуется для освещения энергосберегающими лампами 12 В, а для питания бытовой техники на 220 В используется инвертор, подключенный к аккумулятору. Цена энергосберегающих ламп ELS NAPS мощностью 5 Вт на напряжение 12 В (рис. 2.33) составляет 650 руб. [27].
Рис. 2.32. Автономная система электроснабжения на солнечных батареях с низковольтной сетью для освещения
Рис. 2.33. Энергосберегающие лампы ELS NAPS (5 Вт, 12 В)
Обычно такие системы применяются, если максимальное расстояние от аккумулятора до самой дальней подключенной нагрузки не превышает 10–15 м, а ее мощность не более 100 Вт. При этом нужно следить за тем, чтобы падение напряжения при всех включенных потребителях в самой дальней точке было в пределах допустимого (обычно не более 10 %).
Дальнейшее развитие схемы – введение в нее контроллера и отказ от низковольтной сети освещения – иллюстрирует рис. 2.34. Контроллер заряда служит для предохранения аккумуляторов от избыточной подзарядки солнечной батареей, а также от избыточной разрядки в ходе ее использования. Так как все это отрицательно влияет на функциональность и сокращает срок службы оборудования. При такой схеме производимая электроэнергия аккумулируется в батареях и расходуется затем в темное время суток или в период слабой инсоляции.
Рис. 2.34. Автономное обеспечение электроэнергией загородного дома от солнечных модулей и аккумуляторов
Система данного типа требует, чтобы фотоэлектрическое поле имело размеры, обеспечивающие в период нормальной инсоляции как непосредственно нагрузку рабочего электрического контура, так и подзарядку аккумуляторных батарей.