В 2011 году, еще будучи студентом Университета Торонто, Суцкевер прилетел в Лондон на собеседование с руководителями DeepMind. На Рассел-сквер он встретился с Демисом Хассабисом и Шейном Леггом, и те рассказали ему, что они пытаются делать. Они объяснили, что хотят создать AGI – искусственный интеллект общего назначения – и начинают с систем, которые играют в игры. Слушая их, Суцкевер думал, что они утратили связь с реальностью. AGI – не тема для разговора между серьезными исследователями. Поэтому он отказался от работы в компании и вернулся в университет. Но, оказавшись впоследствии в Google, он понял, что сама природа исследований ИИ изменилась. Речь уже не шла об одном-двух чудаках, возящихся с нейронными сетями в университетской лаборатории. Речь шла о больших командах людей, работающих над серьезными общими целями, имея в своем распоряжении огромные вычислительные мощности. Он всегда был приверженцем больших идей, и, когда он перебрался в Google Brain, идеи стали еще масштабнее. Проведя два месяца в офисе DeepMind в рамках программы трансатлантического сотрудничества между лондонской лабораторией и Google Brain, он пришел к убеждению, что единственный способ добиться реального прогресса – это устремиться к тому, что казалось недостижимым. То, что было у него на уме, отличалось как от представлений Джеффа Дина (больше интересовавшегося практическими приложениями, которые можно тут же выпустить на рынок), так и от того, о чем мечтал Ян Лекун (который хоть и любил заглянуть в будущее в своих исследованиях, но никогда не заходил слишком далеко). Виды на будущее Суцкевера были гораздо ближе к философии основателей DeepMind. Он говорил о далеком будущем так, словно оно было очень близко, – о машинах, которые умнее людей, о компьютерных центрах обработки данных, которые сами создавали новые центры обработки данных. Все, что ему и его коллегам было нужно, – это больше исходных данных и больше вычислительной мощности. Тогда они могли бы обучить систему делать
К моменту перехода Суцкевера в Google метод глубокого обучения привел к радикальным изменениям в технологиях распознавания речи и изображений. Следующим важным шагом стал машинный перевод – технология, позволявшая мгновенно перевести текст с любого языка на любой другой. Это была более сложная проблема. Речь уже не шла об идентификации какого-то одного объекта, например собаки на фотографии. Речь шла о том, чтобы взять одну