Чтобы наглядно проиллюстрировать, как следует действовать наилучшим образом, я воспользуюсь простейшим примером. Предположим, что между двумя кусками черного сукна находится инородное тело, это может быть монета, и требуется определить ее местонахождение. Мы можем сделать это, поместив, к примеру, кусок картона позади ткани и затем выстрелив с определенного расстояния зарядом из мелкой дроби по сукну в то место, где предположительно находится монета. Дробь пройдет сквозь сукно во всех точках попадания, кроме того места, где находится монета, и на расположенном позади сукна картоне оно четко обозначится отсутствием отметин. Точно так же мы поступаем, направляя рентгеновские лучи на местонахождение подобного тела. Рентген вооружил нас ружьем, чтобы стрелять из него, — поистине замечательным ружьем, стреляющим пулями, проникающая способность которых тысячекратно превышает возможности пушечного ядра, и посылающим их, вероятно, на расстояние многих миль со скоростью, которая больше не может быть достигнута ни одним известным нам способом. Эти пули так малы, что мы можем стрелять ими по нашим тканям в течение дней, недель, месяцев и лет, по всей видимости, без пагубных последствий. Вместо картона, показывающего траекторию полета пуль, он дал нам то, что, по сути, называется экраном Рентгена, который начинает светиться во всех тех местах, куда попадают пули. Там, где они не могут попасть в экран из-за вмешательства непрозрачного тела, встающего на их пути, экран не светится, и мы видим теневой отпечаток предмета. Достаточно просто спроецировать теневое изображение предмета таким способом, но когда требуется показать более мелкие структурные детали предмета, возникают трудности. Сразу же обнаружится, что для достижения этой цели с наилучшим результатом необходимо в той или иной степени осуществить два условия. Во-первых, экран требуется изготовить из материала, способного засветиться от самого незначительного удара; и, во-вторых, все пули должны быть одинаковыми по величине и двигаться с одной скоростью. Ни одно из этих условий до сих пор не осуществлено на практике, потому что для всех известных нам веществ требуется сильный удар, чтобы вызвать свечение, и пока не найден способ, позволяющий добиться единообразия в скорости и величине гипотетических пуль. Не нужно долгих размышлений, чтобы прийти к заключению, что пули должны лететь с определенной скоростью, которая при всех условиях даст наибольшую степень изображения. Эта скорость легко определяется опытным путем. Резкость изображения будет, очевидно, наилучшей, если пули, проходящие сквозь наиболее плотные части тела, поражают экран так слабо, что не вызывают его свечения, в то время как пули, проходящие сквозь области с несколько меньшей плотностью, наталкиваются на экран с достаточной силой, чтобы заставить его слабо светиться. Чем более чувствителен экран к столкновению, то есть чем слабее удар, заставляющий экран светиться, тем больше деталей будет выявлено. Отсюда следует, что для высокоточного применения рентгеновских лучей наиболее подходящим является вещество не с наибольшим свечением, но с наибольшей чувствительностью.
Изложенные выше соображения убедили меня взять на вооружение следующий метод, который на поверку оказался весьма успешным. Сначала экран Рентгена прикладывается к предмету, который подлежит исследованию, при этом напряжение на клеммах трубки сильно понижено. Затем напряжение медленно и постепенно повышается. Некоторое время спустя вы увидите, что при определенном напряжении теневое изображение исследуемого предмета будет наиболее отчетливым. Но поскольку вакуум продолжает возрастать, напряжение, как правило, поднимается, и изображение теряет четкость, хотя экран начинает светиться более ярко. Как только четкость немного снижается, экспериментатор должен на короткое время изменить направление тока, что приведет к некоторому уменьшению вакуума. Когда ток опять начнет идти в том же направлении, в каком он шел сначала, то есть в направлении, при котором вакуум медленно и постепенно усиливается, изображение вновь становится четким, и с помощью такой несложной манипуляции можно добиться наилучшего результата. Впрочем, этот прием несет в себе еще одно преимущество, ибо частое реверсирование движения тока на обратное приводит к более яркой фосфоресценции экрана. Производя съемку, нам следует наблюдать за работой лампы по экрану и умело пользоваться переключателями, как описано выше.