Читаем Строение и законы Вселенной полностью

В современной науке признается изменение скорости света при его прохождении через скопление материи на основе сплошного взаимодействия фотонов с веществом материи или полем. Известно так называемое «черепковское» излучение, когда информация о прохождении света через материю проходит быстрее, чем расчетная скорость света в данном конкретном веществе (но не более С в вакууме). Но тут мы сталкиваемся с неким парадоксом, так как скорость света в определенной среде есть максимальная скорость распространения в ней информации, то есть связка «время — расстояние». О «времени» имеет смысл говорить лишь в случае отсчета координат; например, свет любого небесного тела является своеобразным «отсчетом» его координат в системе «время — пространство». Если в небольшом объеме какого-либо вещества создать условия, при которых скорость света стремится к нулю, то для наблюдателя в этой системе ее координаты будут стремиться расшириться до бесконечности- Значит, внутри системы появятся свое индивидуальное время и индивидуальные координаты, резко отличающиеся от окружающего мира.

Если, как пишут в прессе, замедление времени определяется физическим составом {известными атомными частицами в различных сочетаниях) и низкой температурой, то, следуя элементарной логике, можно сказать, что свет (фотоны) должен проходить охлажденные области космического пространства гораздо медленнее, чем со скоростью около 300 000 км/с. Отсюда следует парадоксальный вывод о том, что светящиеся космические объекты, по земным меркам, находятся на порядки ближе к нашей планете, чем это сейчас принято считать.

Еще сложнее вопрос с раскаленными космическими объектами — звездами и Солнцем. Там скорость распространи 1ия спета внутрь (предельная скорость распространения информации) должна резко возрастать по мере увеличения температуры. Создается парадокс — информация об этом явлении может появиться раньше самого явления.

Таким образом, возникает совершенно непредсказуемая ситуация, когда для определения межзвездных расстояний следует отдельно считать скорость света в окрестностях светящихся объектов и в межзвездном охлажденном пространстве, причем параметров этих процессов для разных объектов мы не знаем. Непонятно также, как действовать в случаях несветящихся объектов, например, определять расстояние до планет, находящихся вблизи других звезд.

Практика современных астрономии и физики, ограниченная Солнечной системой, пока подтверждает неизменность константы скорости света в конкретных условиях, а приборы обладают достаточной точностью и независимостью от протекающих процессов. Так что в случае изменения скорости света в зависимости от параметров среды (физического состава и температуры) это было бы зафиксировано.

Еще раз хотелось бы подчеркнуть, что изменение подобных скорости света краеугольных параметров в физике возможно, но требует самой тщательной и независимой проверки по всем статьям, вплоть до философских и юридических, так как результат всегда непредсказуем. Такие попытки продолжаются, что объективно полезно, ток как не дают закостенеть дог мам. В интересной работе К. В. Рождественского, например, предлагается новый подход в рамках классической физики к определению констант Закона всемирного тяготения, Закона Архимеда, некоторых законов электродинамики и т. д.

Еще раз хотелось бы напомнить, что наблюдатель всегда является составляющей частью системы, а прибор наблюдателя — взаимодействующим с системой элементом, так что неосознанные, но эффективные опыты приносят больше вреда, чем пользы. Нильс Бор по этому поводу заметил, что если раньше считалось, что физика (наука) описывает Вселенную, то теперь мы знаем, что физика всего лишь описывает то, что мы можем сказать о Вселенной.

Возникновение Вселенной

О возникновении Вселенной в настоящее время существует множество самых различных предположений. Их проверка современными методами исследования практически невозможна, а косвенные данные могут интерпретироваться по-разному.

Считается, что существовал некий момент, с которого началось (по нашему отсчету положительно направленного времени) развитие Вселенной в соответствии с тем комплексом законов, который предусматривает определенную сепарацию и усложнение элементов структуры.

Такой момент принято называть «Большим взрывом», то есть началом расширения некой области, в результате чего появилась скорость (то есть пространство и время). Соответственно время и изменение условий привело к изменению структуры вещества Вселенной.

Подобный «Большой взрыв» требует существования неких довременного объекта и толчка, спровоцировавшего расширение. Данный вопрос крайне труден, и для его объяснения привлекаются многие теории — от религиозного представления о «дремлющем яйце» и внезапном (под действием Высшего Разума) целенаправленном развитии до представления о «вывороте Вселенной через черную дыру».

Перейти на страницу:

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука
Записки примата: Необычайная жизнь ученого среди павианов
Записки примата: Необычайная жизнь ученого среди павианов

Эта книга — воспоминания о более чем двадцати годах знакомства известного приматолога Роберта Сапольски с Восточной Африкой. Будучи совсем еще молодым ученым, автор впервые приехал в заповедник в Кении с намерением проверить на диких павианах свои догадки о природе стресса у людей, что не удивительно, учитывая, насколько похожи приматы на людей в своих биологических и психологических реакциях. Собственно, и себя самого Сапольски не отделяет от своих подопечных — подопытных животных, что очевидно уже из названия книги. И это придает повествованию особое обаяние и мощь. Вместе с автором, давшим своим любимцам библейские имена, мы узнаем об их жизни, страданиях, любви, соперничестве, борьбе за власть, болезнях и смерти. Не менее яркие персонажи книги — местные жители: фермеры, егеря, мелкие начальники и простые работяги. За два десятилетия в Африке Сапольски переживает и собственные опасные приключения, и трагедии друзей, и смены политических режимов — и пишет об этом так, что чувствуешь себя почти участником событий.

Роберт Сапольски

Биографии и Мемуары / Научная литература / Прочая научная литература / Образование и наука