Читаем Структура реальности. Наука параллельных вселенных полностью

Что нам следует ожидать, когда эти эксперименты проводятся с использованием только одного фотона за раз? Предположим, что наш фонарик отнесен так далеко от экрана, что за целый день на него падает только один фотон. Что увидит наша лягушка, наблюдающая за экраном? Если верно то, что каждому фотону мешают другие фотоны, то не должны ли эти помехи уменьшиться, когда фотоны появляются очень редко? И не прекратятся ли они вовсе, если через прибор в каждый момент времени будет проходить только один фотон? Мы по-прежнему можем ожидать появления полутеней, так как фотон, проходя через щель, может отклониться от своего курса (быть может, в результате скользящего удара о край щели). Чего точно не должно быть, так это мест на экране, которые, подобно точке X, получают фотоны, когда открыты лишь две щели, но становятся темными, когда открывают две другие.

Однако именно это мы и увидим! Независимо от того, насколько редко появляются фотоны, картина теней остается неизменной. Даже при проведении эксперимента с одиночными фотонами мы не увидим ни единого случая их попадания в точку X, если открыты все четыре щели. Но стоит только закрыть две щели, и вспышки в точке Х возобновятся.

Быть может, фотон расщепляется на фрагменты, которые после прохождения через щели изменяют свою траекторию и соединяются вновь? Эту возможность мы тоже можем исключить. Опять-таки если запустить в наш прибор ровно один фотон и у каждой из четырех щелей установить по детектору, то зарегистрировать сигнал сможет максимум один из них. Поскольку при подобном эксперименте никогда не наблюдается срабатывания двух детекторов одновременно, можно утверждать, что обнаруживаемые ими объекты не расщепляются.

Хорошо, но если фотоны не расщепляются на фрагменты и не меняют траекторию под действием других фотонов, то что же их отклоняет? Когда через прибор проходит по одному фотону за раз, что проникает через другие щели, создавая ему помехи?

Подведем итог. Мы обнаружили, что, когда один фотон проходит через наш прибор:

• он проходит через одну из щелей, а затем что-то воздействует на него, заставляя отклониться от своей траектории, и это отклонение зависит от того, какие еще щели открыты;

• воздействующие агенты прошли через какие-то из оставшихся щелей;

• воздействующие агенты ведут себя в точности так же, как фотоны…

• …но их невозможно увидеть.

С этого момента я буду называть воздействующие объекты «фотонами». Именно фотонами они и являются, хотя в данный момент кажется, что существует два вида фотонов, один из которых я временно назову реальными фотонами, а другой – теневыми фотонами. Первые мы можем увидеть или обнаружить с помощью приборов, тогда как вторые – неосязаемы (невидимы): их можно обнаружить только косвенно по их воздействию на видимые фотоны. (Далее мы увидим, что между реальными и теневыми фотонами нет особой разницы: каждый фотон осязаем в одной вселенной и не осязаем во всех остальных, параллельных вселенных – но я забегаю вперед.) Пока мы пришли только к тому, что каждый реальный фотон сопровождают фотоны свиты, или теневые фотоны, и что при прохождении фотона через одну из четырех щелей некоторые теневые фотоны проходят через три оставшиеся. Поскольку возникают разные интерференционные картины, если мы прорезаем щели в других местах экрана, но все еще в пределах луча, теневые фотоны должны попадать на всю освещенную часть экрана, когда на него попадает реальный фотон. Следовательно, теневых фотонов гораздо больше, чем реальных. Сколько же их? Эксперименты не могут ограничить это число сверху, но дают приблизительную нижнюю границу. Максимальная площадь, которую мы можем легко осветить с помощью лазера в лаборатории, составляет около одного квадратного метра, а минимальный достижимый размер отверстий может быть около 0,001 мм. Таким образом, существует около 1012 (одного триллиона) возможных положений отверстий на экране. Следовательно, каждый реальный фотон должен сопровождаться по крайней мере триллионом теневых.

Таким образом, мы пришли к выводу о существовании бурлящего, непомерно сложного скрытого мира теневых фотонов. Они летят со скоростью света, отражаются от зеркал, преломляются линзами и останавливаются, встретив светонепроницаемые барьеры или фильтры неподходящего цвета. Однако они не оказывают никакого воздействия даже на самые чувствительные детекторы. Единственная вещь во вселенной, по воздействию на которую можно наблюдать теневой фотон, – это сопровождаемый им реальный фотон. Это явление называется интерференцией. Если бы не это явление и не странные картины теней, по которым мы его обнаруживаем, теневые фотоны были бы абсолютно незаметными.

Перейти на страницу:

Похожие книги

101 ключевая идея: Физика
101 ключевая идея: Физика

Цель книги — доступным и увлекательным способом познакомить читателя с физикой, привлечь внимание к знакомым предметам, раскрыть их незнакомые стороны. Здесь объясняется 101 ключевая идея великой науки, расширяющей наши знания о мире. Факты и основные понятия физики изложены так, что развивают любознательность, помогают преодолеть косность рутинного мышления, обостряют интерес к вещам, не затрагивающим нашего существования, но без которых это существование уже не мыслится; а где есть интерес, там есть желание новых знаний. От читателя не потребуется особой подготовки, кроме способности воспринимать и удивляться. Статьи расположены в алфавитном порядке. Книга предназначена для широкого круга читателей, а также учащихся школ и вузов.

Джим Брейтот , Олег Ильич Перфильев

Физика / Справочники / Образование и наука / Словари и Энциклопедии
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика