Второй химический язык, также возникший в глубокой древности, прослеживается в нуклеиновых кислотах — ДНК и РНК
[1214]. Они относятся к числу естественных и синтетических компонентов, известных как полимеры, и представляют собой гигантские цепочки молекул, каждая из которых характеризуется повторяющимся набором всего лишь четырех химических элементов. Если говорить об РНК, то это — аденин, цитозин, гуанин и урацил (представленные следующими буквами: А, С, G и U). Первые три элемента — аденин, цитозин и гуанин — встречаются и в ДНК. Однако на четвертом месте стоит тимин (Т). Этот элемент настолько близок урацилу, что при постоянном взаимодействии между нитями ДНК и РНК, протекающем на клеточном уровне, не наблюдается никакой несовместимости [1215].Оба эти полимера (при том что ДНК обычно выполняет функцию "командующего", а РНК обычно выступает в роли "передатчика") несут в себе всю генетическую информацию, необходимую для создания живого организма
[1216]. Более того, и ДНК, и РНК с четырьмя их базовыми элементами остаются одними и теми же и выполняют одну и ту же функцию во всех живых существах — будь то слон или бактерия, собака или блоха, медуза или акация, капуста или бабочка, червь или человек. И так уже на протяжении четырех миллиардов лет. Единственное, что меняется, — это порядок букв А, С, G и Т в том генетическом коде, который вписан в ДНК каждого организма, ну и, конечно же, количество ДНК в разных организмах. Так, кишечная бактерия Е. coli состоит из одной-единственной клетки, внутри которой свернулась полумиллиметровая полоска полимера ДНК [1217]. В свою очередь, мы уже говорили о том, что каждая из миллиардов клеток, формирующих человеческое тело, содержит два метра той же самой ДНК. Совершенно очевидно, что нить подобной длины загружена гораздо большим количеством абзацев генетического кода, чем то, в котором испытывает потребность крохотная Е. coli. Но даже для того, чтобы закодировать простейшие формы жизни, необходимо большое количество информации. Mycoplasma geni— talium представляет собой мельчайшую из бактерий, известных на сегодняшний день науке. Но даже ей требуется достаточное количество ДНК, чтобы записать весь генетический код, состоящий из 580 тысяч букв. Что уж говорить о генетическом коде человека, который состоит приблизительно из трех миллиардов букв. И все эти буквы растянулись вдоль каждой из двухметровых нитей ДНК, свернувшихся во всех без исключения клетках человеческого организма [1218].Настоящим научным прорывом шестидесятых годов XX века можно назвать работу, связанную с расшифровкой генетического кода. В итоге был создан своего рода маленький словарик, "в общих принципах похожий на азбуку Морзе" — как написал о нем Крик. Этот словарь "соотносит четырехбуквенный язык генетического материала с двадцатью буквами протеина, которые можно уподобить исполнительному языку"
[1219].Не погружаясь в самые глубины субмикроскопической алхимии, хотелось бы отметить, что комбинация любых трех "букв" ДНК побуждает клетки соединять аминокислоты таким образом, чтобы синтезировать из них определенного типа протеины. И именно это обуславливает конечный образ и набор функций каждого живого организма — строго в соответствии с унаследованным им кодом. Учитывая огромное разнообразие жизни на нашей планете, я не могу избавиться от изумления при мысли о том, что в каждом случае мы имеем дело с одним и тем же невероятно простым набором букв, перетасованным особым образом. Соответственно, лишь порядок расположения этих букв определяет разницу между геранью и жирафом, слоном и муравьем, человеком и обезьяной (точно так же, как это происходит в написанных словах). Однако все это, как отмечает Крик, сводится в итоге к чистой математике:
Мы уже говорили о том, что живые клетки используют для создания протеинов лишь 20 аминокислот. И это порождает весьма существенную "двусмысленность" — когда большинство триплетов кодирует более чем одну кислоту, и при этом различные триплеты могут кодировать одну и ту же аминокислоту.