Читаем Сверточные нейросети полностью

Свертка (Convolution) является одной из ключевых операций в сверточных нейронных сетях (CNN), играющей важную роль в извлечении признаков из входных данных, таких как изображения. Операция свертки осуществляется путем сканирования входного изображения с помощью набора фильтров, также известных как ядра свертки. Каждый фильтр выявляет определенные локальные паттерны или признаки, такие как грани, текстуры или более сложные структуры, и создает карту признаков, отражающую наличие этих признаков в разных областях изображения.

Фильтры в сверточной нейронной сети представляют собой набор параметров, которые обучаются в процессе тренировки модели. Во время обучения сети эти фильтры настраиваются таким образом, чтобы максимизировать различие между классами объектов на изображениях или выполнить другие задачи, связанные с обработкой данных. Фильтры перемещаются по входному изображению с определенным шагом, называемым шагом свертки (stride), и для каждой позиции создается новая карта признаков.

Операция свертки является основой для извлечения иерархии признаков из изображений и других типов данных с сетчатой структурой. Она позволяет нейронной сети автоматически изучать наиболее информативные признаки из входных данных без необходимости предварительного определения характеристик, что делает сверточные нейронные сети мощным инструментом для анализа и обработки изображений, а также для решения широкого спектра задач машинного зрения.

Для более наглядного представления работы операции свертки, рассмотрим пример применения фильтра к изображению. Предположим, у нас есть 3x3 матрица, представляющая собой часть черно-белого изображения:

```

[120, 100, 80]

[90, 110, 70]

[100, 120, 110]

```

Теперь допустим, у нас есть фильтр размером 2x2:

```

[1, 0]

[0, 1]

```

Чтобы применить этот фильтр к нашей матрице, мы начинаем с левого верхнего угла матрицы и перемножаем элементы матрицы на соответствующие элементы фильтра:

```

[120*1, 100*0]

[90*0, 110*1] = [120, 110]

```

После умножения и суммирования полученных значений, мы получаем новое значение для верхнего левого пикселя в результирующей матрице. Затем мы сдвигаем фильтр на один пиксель вправо (с шагом 1) и повторяем процесс для следующего столбца, а затем для остальных строк. Вот как выглядит этот процесс:

```

[120, 100, 80] [120, 110]

[90, 110, 70] -> [120, 110] (результат сдвига фильтра вправо на 1 пиксель)

[100, 120, 110]

```

Таким образом, мы получаем результирующую матрицу размером 2x2, которая представляет собой карту признаков, полученную после применения свертки. Этот процесс позволяет нейронной сети автоматически извлекать локальные признаки изображения, такие как грани или текстуры.

2. Активация (Activation):

Функции активации являются неотъемлемой частью сверточных нейронных сетей (CNN), играющей важную роль в добавлении нелинейности в модель. После операции свертки и других сложных вычислений, функции активации применяются к полученным значениям. Одной из наиболее популярных функций активации является ReLU (Rectified Linear Unit), которая заменяет отрицательные значения на ноль, оставляя положительные значения без изменений. Это позволяет сети изучать нелинейные зависимости между признаками, что часто является ключевым для успешного решения различных задач.

Кроме ReLU, существуют и другие функции активации, такие как Leaky ReLU, ELU и другие, которые предложены для решения определенных проблем, таких как затухание градиента или увеличение устойчивости обучения. Эти функции активации помогают сети учиться сложным паттернам и открывают возможность для обнаружения более сложных признаков в данных. Без применения функций активации, нейронная сеть была бы эквивалентна линейной модели, что значительно снизило бы ее способность к изучению сложных зависимостей в данных.

Таким образом, функции активации играют важную роль в обучении сверточных нейронных сетей, помогая им изучать и запоминать сложные паттерны в данных, что делает их мощным инструментом для различных задач обработки изображений, распознавания образов и других задач машинного зрения.

Давайте рассмотрим пример применения функции активации ReLU (Rectified Linear Unit) в сверточной нейронной сети (CNN).

Предположим, у нас есть результат операции свертки, который выглядит следующим образом:

```

[-0.5, 0.8, 1.2]

[0.1, -0.9, 0.5]

[1.5, 2.0, -1.3]

```

Теперь применим функцию активации ReLU к этим значениям. ReLU заменяет все отрицательные значения на ноль, оставляя положительные значения без изменений.

```

ReLU([-0.5, 0.8, 1.2]) = [0, 0.8, 1.2]

ReLU([0.1, -0.9, 0.5]) = [0.1, 0, 0.5]

ReLU([1.5, 2.0, -1.3]) = [1.5, 2.0, 0]

```

Таким образом, после применения функции активации ReLU, отрицательные значения стали нулями, а положительные значения остались без изменений. Это позволяет сети сохранить только положительные признаки и отфильтровать отрицательные, добавляя нелинейность в модель и улучшая ее способность изучать сложные паттерны в данных.

3. Пулинг (Pooling):

Перейти на страницу:

Похожие книги

Об интеллекте
Об интеллекте

В книге "Об интеллекте" Джефф Хокинс представляет революционную теорию на стыке нейробиологии, психологии и кибернетики и описывающую систему "память-предсказание" как основу человеческого интеллекта. Автор отмечает, что все предшествующие попытки создания разумных машин провалились из-за фундаментальной ошибки разработчиков, стремившихся воссоздать человеческое поведение, но не учитывавших природу биологического разума. Джефф Хокинс предполагает, что идеи, сформулированные им в книге "Об интеллекте", лягут в основу создания истинного искусственного интеллекта - не копирующего, а превосходящего человеческий разум. Кроме этого книга содержит рассуждения о последствиях и возможностях создания разумных машин, взгляды автора на природу и отличительные особенности человеческого интеллекта.Книга рекомендуется всем, кого интересует устройство человеческого мозга и принципы его функционирования, а также тем, кто занимается проблемами разработки искусственного интеллекта.

Джефф Хокинс , Джеф Хокинс , Сандра Блейксли , Сандра Блэйксли

Технические науки / Прочая компьютерная литература / Образование и наука / Книги по IT / Зарубежная компьютерная, околокомпьютерная литература
Тайны и секреты компьютера
Тайны и секреты компьютера

Эта книга предназначена для тех, кто самостоятельно осваивает мир информационных технологий. Программирование в среде Microsoft Office, устройство сетей Internet и Fidonet, работа системы электронной почты, структура системного реестра Windows и файловой системы, строение жидкокристаллических дисплеев и проблема наличия различных кодировок русского языка, — про все это рассказывается в ней. Многообразие тем и легкий стиль изложения сделают ее вашим спутником на долгое время, и вы всегда сможете найти в ней нужную именно в данный момент информацию.Если Вы интересуетесь компьютерными технологиями, желали бы расширить свои знания и умения в этой области, то она Вам наверняка понравится.http://comptain.nm.ru

Антон Александрович Орлов , Антон Орлов

Фантастика / Зарубежная компьютерная, околокомпьютерная литература / Фэнтези / Прочая компьютерная литература / Книги по IT
Фотоприколы с помощью Photoshop
Фотоприколы с помощью Photoshop

Книга в доступной и юмористической форме раскроет перед вами волшебный мир компьютерной графики. В первой (теоретической) части вы познакомитесь с основными понятиями цифровой графики, интерфейсом программы Photoshop и принципами ее работы. Вторая (практическая) часть, представленная в виде забавных примеров, весело и непринужденно поможет вам научиться выполнять различные трюки с фотографиями. Вы узнаете, как изменить внешний вид президента, сделать утюг водоплавающим, заставить футболиста летать и многое другое, а заодно изучите богатую палитру инструментов Photoshop. С этой веселой книгой, снабженной забавными иллюстрациями, проблемы с Photoshop покажутся вам просто смешными.

Геннадий Геннадьевич Кондратьев , Юрий Анатольевич Гурский

Программирование, программы, базы данных / Прочая компьютерная литература / Книги по IT