«Две частицы могут быть так переплетены квантовыми эффектами, что их хаотичный выбор между одним или другим свойством скоррелирован: точно как каждая из инопланетных сфер случайно выбирает между красным и синим, а затем каким-то образом цвета, выбранные сферами в коробочках с одинаковыми номерами, оказываются скоррелированными (обе мигают красным или обе мигают синим), свойства, выбранные случайно двумя частицами, даже если они удалены в стороны в пространстве, могут быть подобным образом совершенно упорядочены. Грубо говоря, хотя две частицы удалены друг от друга на большое расстояние, квантовая механика показывает: что бы ни сделала одна частица, другая сделает связанную вещь.
В качестве конкретного примера: если вы носите солнечные очки, квантовая механика показывает, что с вероятностью 50: 50 отдельный фотон — вроде того, который отразился от поверхности озера или от асфальтовой дороги, — сможет пробраться сквозь ваши уменьшающие яркость поляризованные линзы: когда фотон достигает стекла, он случайным образом „выбирает“ между тем, отразиться назад или пройти насквозь. Поразительная вещь в том, что фотон может иметь партнера-фотон, который мчится в милях отсюда в противоположном направлении, и, однако, когда он столкнется с той же вероятностью 50: 50 пройти сквозь другие поляризованные линзы солнечных очков, он каким-то образом повторит все, что бы ни сделал начальный фотон. Даже если каждый результат определен случайным образом и даже если фотоны разнесены в пространстве, если один фотон пройдет насквозь, так же сделает и другой. Это разновидность нелокальности, предсказанная квантовой механикой».
Итак, законы квантового мира не только по форме, но и по самой своей глубинной сути принципиально отличаются от классической механики, воплощенной в том, что мы называем здравым смыслом повседневной реальности. Уже тысячелетия астрономы наблюдают за траекториями небесных тел, но это, конечно же, никак не влияет на эллиптичность планетарных орбит. Однако, наблюдая за электроном, мы обязательно изменим его энергетическое состояние и волновую функцию, так что любое измерение полностью и неконтролируемым образом изменит общее состояние микрочастицы. Единственный выход для физиков-экспериментаторов — это выполнить измерения над очень большим числом электронов (в идеале такое количество одинаковых микрообъектов должно практически стремиться к бесконечности), тогда, и только тогда, можно со сколь угодно высокой точностью узнать, какой же будет исход эксперимента над иными микрочастицами, находящимися в тех же начальных условиях.
Именно здесь и пролегает связь между классической и квантовой физикой, ведь единичные одинаковые квантово-механические опыты приводят к разным результатам просто в силу принципиальной невозможности обеспечить для них совершенно одинаковые условия проведения, как это происходит в классической механике. Но достаточно большое множество одинаковых опытов над не менее существенным множеством одинаковых квантовых объектов (например, тех же электронов) обязательно в конечном итоге приведет к одинаковым результатам.
Как поразительно точно подметил в книге «Квантование в науке настоящего и будущего» А. С. Компанеец: