У каждой стороны имелись веские доказательства в пользу своей гипотезы. Наконец в 1897 году молодой английский физик Дж. Дж. Томсон положил конец этим спорам раз и навсегда, а заодно прославился в веках как первооткрыватель первой элементарной частицы —
Используя трубку новой конструкции, Томсон выяснил, что соотношение между электрическим и магнитным полями, при котором их действие уравновешивается, зависит от скорости, с которой движутся частицы. Проведя ряд измерений, Томсон смог определить скорость движения катодных лучей. Оказалось, что они движутся значительно медленнее скорости света, из чего следовало, что катодные лучи могут быть только частицами. Эти неизвестные частицы Томсон назвал «корпускулами», но вскоре они стали называться «электронами».
Сразу же стало ясно, что электроны обязаны существовать в составе атомов — иначе откуда бы они взялись? 30 апреля 1897 года — дата доклада Томсоном полученных им результатов на заседании Лондонского королевского общества — считается днем рождения электрона. И в этот день отошло в прошлое представление о «неделимости» атомов.
В повседневной жизни имеется два способа переноса энергии в пространстве — посредством частиц или волн. Чтобы, скажем, скинуть со стола костяшку домино, балансирующую на его краю, можно придать ей необходимую энергию двумя способами. Во-первых, можно бросить в нее другую костяшку домино (то есть передать точечный импульс с помощью частицы). Во-вторых, можно построить в ряд стоящие костяшки домино, по цепочке ведущие к той, что стоит на краю стола, и уронить первую на вторую: в этом случае импульс передастся по цепочке — вторая костяшка завалит третью, третья четвертую и так далее. Это — волновой принцип передачи энергии.
В обыденной жизни между двумя механизмами передачи энергии видимых противоречий не наблюдается. Так, в бильярде шары передают друг другу энергию при столкновении, как частицы, а произнесенное слово несет энергию звуковой волны.
Однако в квантовой механике все обстоит отнюдь не так просто. Даже из простейших опытов с квантовыми объектами очень скоро становится понятно, что в микромире привычные нам принципы и законы макромира не действуют. Свет, который мы привыкли считать волной, порой ведет себя так, будто состоит из потока частиц — фотонов, а элементарные частицы, такие, как электрон или даже массивный протон, нередко проявляют свойства волны.
Возьмем экран с двумя тонкими горизонтальными прорезями и направим на него луч света. Естественно предположить, что частицы света будут проходить через оба отверстия прямо и за экраном возникнут две четкие световые полосы. Однако на практике мы наблюдаем совершенно иной эффект. Каждая из прорезей играет роль независимого источника вторичных световых волн, как поплавок на воде, и за экраном образуется сложная картина из перемежающихся полос света. Причем часть из них будет располагаться в «мертвой зоне» вне прямой линии попадания света. Это полностью соответствует модели звуковых волн, исходящих из двух стереодинамиков и дающих пик громкости стереоэффекта на линии равного удаления между ними.
Итак, совершенно очевидно, что микрочастицы ведут себя принципиально иначе, чем окружающие нас объекты. Почему это происходит? Это очень важный и сложный вопрос, над которым околонаучные философы бьются уже целое столетие. На самом же деле корпускулярно-волновой дуализм означает, что в любом материальном теле содержится «зародыш» его волновой природы. И чем меньше становится материальный объект, тем больше его вторая «волновая сущность». И электроны, и фотоны представляют собой не волны и не частицы, а нечто совершенно особенное по своей внутренней природе — и потому не поддающееся описанию в терминах нашего повседневного опыта.
Морис Эшер. Все меньше и меньше
Выдающийся голландский график иллюстрирует решение парадокса, возникшего еще в античные времена: что будет, если обыкновенное яблоко делить пополам бесконечное количество раз?
Сверхсложная элементарность
Элементарные частицы, в точном значении этого термина, — это первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. Элементарные частицы современной физики не удовлетворяют строгому определению элементарности, поскольку большинство из них, по современным представлениям, — составные системы. Общее свойство этих систем заключается в том, что они не являются атомами или ядрами. Частицы, претендующие на роль первичных элементов материи, сейчас представляют в виде струн, мембран и просто как мерцающие сгущения полей.
Электронно-лучевая трубка Дж. Дж. Томсона