Читаем Тайны квантового мира: О парадоксальности пространства и времени полностью

Ученые до сих пор теряются в догадках, как объяснить удивительные результаты опытов Вебера. Однако надо признать, что усилия экспериментаторов не пропали даром, и хотя им не удалось непосредственно обнаружить гравитационные волны, интерес научной общественности к данной проблеме позволил начать строительство нескольких установок и даже запланировать полет космической гравитационной обсерватории. Оптимисты даже считают, что в отдаленном будущем гравитационное излучение будут не только наблюдать, но даже использовать для передачи энергии и информации.

Мощный источник гравитационных волн возник при рождении нашего мира в Большом взрыве, на стадии мгновенного расширения Вселенной — космологической инфляции. Этот процесс породил такие сверхмощные гравитационные волны, что их остатки должны были сохраниться до настоящего времени. Их открытие, несомненно, станет сенсацией, и его трудно будет переоценить, ведь в реликтовых волнах раннего этапа Большого взрыва закодирована информация о строении «зародышевой» Вселенной.

Реально обнаружить волны тяготения можно, найдя подходящий космический источник гравитационного излучения. В этом плане весьма перспективны тесные двойные звезды. Мощность гравитационного излучения такой системы возрастает, если траектории звезд сильно вытянуты, тем более если двойная система состоит из нейтронных звезд или черных дыр. Такие системы подобны гравитационным маякам в космосе — их излучение имеет периодический характер.

НЕЙТРОННЫЕ ЗВЕЗДЫ

В космосе существуют и иные периодические источники, порождающие короткие, но чрезвычайно мощные гравитационные всплески. Подобное происходит при коллапсе

(катастрофическом сжатии) массивных звезд, однако деформация звезды должна быть асимметричной, иначе излучение не возникнет. Во время коллапса мощность гравитационного излучения может составлять миллиарды миллиардов ватт! Еще больше энергии выделяется при слиянии нейтронных звезд. Это звезды, состоящие (кроме самого внешнего слоя — коры) не из атомов, а из элементарных частиц — нейтронов. Они образуются при очень сильном сжатии (гравитационном коллапсе) массивных обычных (состоящих из газа) звезд, чья начальная масса превышает несколько масс Солнца.

Характерные размеры нейтронной звезды составляют десятки километров, а средняя плотность приближается к плотности атомных ядер (один кубический сантиметр весит тысячи тонн). Массы всех известных нейтронных звезд близки к массе Солнца. Скорость вращения нейтронной звезды может быть очень высокой и превышать 100 тысяч километров в секунду.

Из-за крошечного размера нейтронные звезды очень слабо видны даже в большие телескопы, но во многих случаях наблюдаются как источники рентгеновского излучения в тесных двойных системах звезд или пульсирующие радиоисточники (пульсары). По современным представлениям, большинство нейтронных звезд образуется при взрывах сверхновых. Наряду с черными дырами нейтронные звезды являются конечной стадией эволюции звезд большой массы.

Как обнаружить гравитационные волны экспериментально? Вебер использовал в качестве детекторов сплошные алюминиевые цилиндры метровой длины с пьезодатчиками (датчиками давления) на торцах. Их с максимальной тщательностью изолировали от внешних механических воздействий в вакуумной камере.

Идея эксперимента Вебера была проста. Пространство под действием гравитационных волн сжимается и растягивается. Благодаря этому цилиндр вибрирует в продольном направлении, выступая в качестве гравитационной антенны, а пьезоэлектрические кристаллы переводят вибрации в электрические сигналы. Любое прохождение космических волн тяготения практически одновременно действует на детекторы, разнесенные на тысячу километров, что позволяет исключить гравитационные импульсы от различного рода шумов.

В данной установке пучок света попадает на полупрозрачную пластинку и разделяется на два взаимно перпендикулярных луча, которые отражаются от зеркал, расположенных на одинаковом расстоянии от пластинки. Затем пучки опять сливаются и падают на экран, где возникает интерференционная картина (светлые и темные полосы и линии). Если скорость света зависит от его направления, то при повороте всей установки эта картинка должна измениться, если нет — остаться такой же, что и раньше.

В дальнейшем гравитационно-волновые антенны значительно усовершенствовали. Сейчас в ряде стран действуют ультракриогенные вибрационные детекторы волн тяготения, работающие при температурах вблизи абсолютного нуля.

Интерференционный детектор волн тяготения работает сходным образом. Предполагается, что проходящая гравитационная волна будет деформировать пространство и изменять длину каждого плеча интерферометра (пути, по которому свет идет от делителя до зеркала), растягивая одно плечо и сжимая другое.

Перейти на страницу:

Все книги серии Наука и мир

Многоликий вирус. Тайны скрытых инфекций
Многоликий вирус. Тайны скрытых инфекций

Вирусы многолики. Они способны вызывать не только острые, но и скрытые, в частности и так называемые медленные, инфекции: врожденную краснуху, СПИД, вирусные гепатиты, бешенство, подострый склерозирующий панэнцефалит и многие другие. Вторжение вирусов в организм людей порой вовсе не сопровождается проявлениями признаков болезни: мы продолжаем ощущать себя здоровыми. И тем не менее скрытая вирусная инфекция может привести к самым неожиданным, а иногда и трагическим последствиям. Новые данные о возбудителях медленных инфекций (в том числе и не вирусных), о масштабах распространения их по миру и механизмах развития, а также, что самое главное, о мерах по предупреждению этих смертельно опасных заболеваний читатель узнает непосредственно «из первых рук» – от выдающегося ученого-вирусолога В. А. Зуева.

Виктор Абрамович Зуев

Медицина
Тайны квантового мира: О парадоксальности пространства и времени
Тайны квантового мира: О парадоксальности пространства и времени

Квантовая физика — вероятно, один из самых впечатляющих разделов современной науки. Если вы хотите узнать о ее сенсационных успехах и достижениях, среди которых квантовая телепортация, модели темной материи и энергии, представление о множественной физической реальности, — эта книга для вас. Каким образом объединяются космические и кварковые масштабы нашего мира и как ведет себя пространство-время на самых нижних, сверхмикроскопических «этажах» Мироздания, каковы перспективы таких наук будущего, как квантовые кибернетика, информатика, криптография, насколько удачны предпринятые учеными попытки построения моделей многомировой Вселенной — Мультиверса и создания всеобщей «теории всего»? Для автора — доктора физико-математических наук, профессора, академика УАН О. О. Фейгина вопросы квантовой физики, электроники и квантовой космологии многие годы являются областью научных интересов.Для широкого круга читателей.

Олег Орестович Фейгин

Научная литература

Похожие книги

Управление персоналом
Управление персоналом

В учебнике рассмотрены эволюция, теория, методология науки управления персоналом; стратегия и политика работы с людьми в организации; современные технологии их реализации; управление поведением работника; психофизиологические аспекты трудовой деятельности; работа с персоналом в условиях интернационализации бизнеса; формирование современных моделей службы персонала.Специфика учебника – знакомство читателя с дискуссионными проблемами кадрового менеджмента, перспективами его развития, прикладными методиками, успешно реализуемыми на предприятиях Германии, Австрии, Голландии, Ирландии, Греции, – стран, в которых авторы учебника неоднократно проходили длительные научные и практические стажировки.Для студентов, магистрантов, специализирующихся на изучении вопросов управления персоналом, профильных специалистов служб персонала, руководителей предприятий и организаций.Рекомендовано УМО вузов России по образованию в области менеджмента в качестве учебника для студентов высших учебных заведений, обучающихся по специальностям «Менеджмент организации» и «Управление персоналом».

Коллектив авторов

Научная литература / Прочая научная литература / Образование и наука
Кто бы мог подумать! Как мозг заставляет нас делать глупости
Кто бы мог подумать! Как мозг заставляет нас делать глупости

Книга молодого научного журналиста Аси Казанцевой — об «основных биологических ловушках, которые мешают нам жить счастливо и вести себя хорошо». Опираясь по большей части на авторитетные научные труды и лишь иногда — на личный опыт, автор увлекательно и доступно рассказывает, откуда берутся вредные привычки, почему в ноябре так трудно работать и какие вещества лежат в основе «химии любви».Выпускница биофака СПбГУ Ася Казанцева — ревностный популяризатор большой науки. Она была одним из создателей программы «Прогресс» на Пятом канале и участником проекта «Наука 2.0» на телеканале Россия; ее статьи и колонки публиковались в самых разных изданиях — от «Троицкого варианта» до Men's Health. «Как мозг заставляет нас делать глупости» — ее первая книга.

Анастасия Андреевна Казанцева , Ася Казанцева

Научная литература / Биология / Биохимия / Психология / Образование и наука