Читаем Тайны великих открытий полностью

Анализ физических принципов подразумевает и анализ формул. Наверняка при слове "формулы" у читателя свело or скуки скулы — но вспомните, как в "Букинисте" вы листали книгу "Космонавтика" и обливались слезами — как же все это безумно интересно! Сухие формулы, которые вам приходилось зубрить в институте, обрели плоть и кровь. Как оказалось, с их помощью можно рассчитать фотонный двигатель, космический парус и еще много чудесных вещей. Почему же в институтах, думали вы, эти формулы не привязывали к конкретным интересным проектам, чтобы оживить этим непонятные криптограммы?

Мы не сделаем этой ошибки. Мы "привяжемся" к конкретным случаям.

Начнем с космонавтики.

1. Существуют проекты ионного, электрического, магнитоэлектрического и других двигателей. Их изобретатели предлагают на этих двигателях долететь до Марса, Венеры, Юпитера и так далее. Но мы знаем, что для полета на Марс требуется скорость не меньше второй космической. Потому и летают на жидкостных ракетах. На ионах и электричестве такой скорости не разовьешь…

Или разовьешь? Формула скорости V=at; время t у нас бесконечно. Достаточно небольшого, буквально микро-скопического ускорения а, чтобы со временем ракета разогналась до ураганных скоростей. Проблема лишь в том, чтобы все долгое время разгона это ускорение оставалось. Изобретателю следует продумать, как он будет получать ионы — от Солнца, батареи или от чего-либо еще.

Этим примером мы хотели продемонстрировать присутствующую в большинстве формул ПРЯМУЮ ЗАВИСИМОСТЬ. Она не так проста, как это кажется на первый взгляд. Непростой ее делают составляющие формулу элементы.

Приглядитесь к формуле V=at. Какими разными являются ее составляющие! Время t увеличивается, оно полно жизни, динамики, развития, энергии. Ускорение же а — это всего лишь коэффициент между скоростью и временем. Оно мертво, безжизненно и, как космос, холодно. Время увеличивается само; чтобы увеличить а, надо много потрудиться.

Чуть изменим формулу, представив ее в следующем виде: a=V/t. Из этой новой формы, похоже, следует, что ускорение само уменьшается со временем. Ух, как интересно! А не открыли ли мы какую-нибудь новую закономерность?

К сожалению, не открыли. Скорость V в данной формуле — это не мертвый коэффициент. Если тело движется в пространстве с ускорением, то с увеличением времени t меняется и скорость V — то есть ускорение а остается постоянным.

Действительно, изучать формулы надо только по таким книгам, как "Космонавтика". Не потому, что это интересно, а потому, что это правильно.

2. Теперь перейдем к КВАДРАТИЧНОЙ ЗАВИСИМОСТИ.

Русский оружейник Федоров потратил много сил на переход русской армии с оружия калибром 7,62 миллиметра на оружие калибром 6,5 миллиметра. Казалось бы, один миллиметр разницы — стоит ли ломать копья? Но лобовое сопротивление пули, помимо прочего, пропорционально площади среза, а площадь считается по формуле pR 2. А это значит, что с уменьшением радиуса площадь падает не настолько же, а существенно больше. Если калибр падает на 13 процентов, то площадь падает на четверть — а это весьма солидно.

По аналогичной причине, в частности, авиаконструкторы и стремились сделать "радиус" самолета (мидель) как можно меньшим. Как и создатели авиадвигателей мидель мотора.

Из всего сказанного можно сделать вывод: если в формуле есть квадратичная зависимость, ради параметра с этой зависимостью следует бороться не покладая рук. Если зависимость кубическая — ради нее можно идти на любое преступление. Конечно, не наказуемое.

3. ЭКСПОНЕНТА по своей подлости сравнима только со старухой Шапокляк. Подтвердим это обвинение примером.

Прочность стальных деталей при нагрузках падает по экспоненте — но до определенного момента, когда сталь, несколько утратив от первоначальной прочность, не приобретает фиксированной твердости.

Вот привычка к такому характеру изменения прочности и подвела английских конструкторов. Алюминиевые "Кометы" — первые в мире реактивные лайнеры — падали вместе с пассажирами, поскольку англичане не учли, что у алюминия экспонента опускается очень низко. Во Вторую мировую алюминиевые бомбардировщики англичан летали без разрушений корпуса — но для послевоенных лайнеров потребовалась герметизация салона. Разница давлений на стенки лайнера со стороны атмосферы и со стороны салона, нагружая алюминиевый корпус рейс за рейсом, и погубила несколько крылатых машин.

На предварительных же испытаниях алюминий вел себя неплохо — поскольку эти испытания затрагивали еще только верхнюю часть коварной экспоненты, по которой точно просчитать дальнейшее ее поведение было нелегко.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже