Читаем Технологический расчет нефтяных процессов и аппаратов методом конечных элементов полностью

При прямом численном уравнений Навье-Стокса, уравнения решаются для несжимаемой жидкости. Для решения используются граничные периодические условия. То есть учитывается изменение функций при переходе между соседними кубическими элементами сплошной среды, как показано в работе. При решении уравнений с граничными условиями методом конечных элементов с применением расчетной сетки по 3D-модели, уравнения Навье-Стокса переписываются в разностной форме для узлов сетки.

Возможно решение уравнений численным спектральным методом. По этому методу решение уравнений Навье-Стокса (с учетом граничных условий) аппроксимируется в форме усеченного ряда Фурье [14,с.312].

Конечно-разностный метод расчета сравнивается со спектральным по пяти параметрам [14,с.314]:

– скорость сходимости,

– эффективность (затраты на расчет для заданной погрешности результата),

– граничные условия (точность конечно-разностных методов нарушается около границ за счет необходимости расчёта точек вне области течения, поэтому сетка корректируется вдоль границ и усложняется),

– разрывы (сглаживание разрывов при локальных ошибках),

– априорная оценка точности (для конечно-разностных методов точность сравнивается на сетках с разным числом конечных элементов).

Аналитические теории турбулентности строятся на статическом подходе к описанию турбулентности [14,с.337]. Динамические параметры в этих теориях являются средними характеристиками течения потока.

Модели переноса турбулентности являются упрощенными моделями турбулентности с эмпирическими параметрами, получаемыми по результатам эксперимента. Динамика взаимодействия между масштабами турбулентной пульсации рассматривается ограниченно.

4.2 Метод расчета

Direct

Numerical

Simulation

Метод прямого численного моделирования DNS – Direct Numerical Simulation предложен в работе Orszag, S. A., and Patterson, G. S. в 1972 г.

Многие авторы отмечают о том, что этот метод наиболее требователен к вычислительным ресурсам. Однако, в настоящее время существуют центры с суперкомпьютерами, выполняются параллельные вычисления и используются другие способы для выполнения затратных расчетов. На основании этого, метод DNS может быть внедрен в практику расчета проточной части насосов для получения наиболее точного результата расчета.

По методу DNS решаются уравнения Навье-Стокса напрямую непосредственно без применения моделей турбулентности (например, модели «k») в отличие от других методов расчета.

При решении уравнений Навье-Стокса находят для любой точки в потоке скорость течения и давление. Результатом расчета по методу DNS является нахождение этих параметров потока.

По методу DNS возможно выполнение расчета течения для различных значений числа Re.

4.3

Модель турбулентности «k – ε»

Существует модель однородной изотропной турбулентности, но с помощью её нельзя провести описание реального потока [15,с.16]. Существует модель локально изотропной турбулентности. Согласно этой модели турбулентные пульсации для мелких масштабов с большим числом Рейнольдса можно рассматривать как однородные изотропные. Колмогоров ввел гипотезу о том, что статический режим для мелких масштабов зависит от коэффициента вязкости k и скорости (средней) диссипации энергии ε.

Масштаб вихрей, на который влияет вязкость получается из этой гипотезы Колмогорова с учетом соображений размерности [15,с.18]:



Между масштабом больших вихрей L и масштабом мелких вихрей η, диссипация энергии ε определяет статистический режим турбулентности (так как вязкость влияет только на мелкие масштабы).

В работе [14,с.34] отмечено, что в терминах теории вероятностей описать явление турбулентности нельзя без использования общих гипотез, в основе которых эмпирические данные. Далее он указывает о том, что с использованием сложного экспериментального оборудования понимание процессов явления турбулентности улучшается.

5 Заключение

1. Технологический расчет методом конечных объемов аппаратов встраивается в структуру производственных процессов проектирования оборудования. Расчет может выполняться после расчета по критериальной методике с использованием последнего в качестве исходных данных, так и выполняться самостоятельно.

2. В настоящее время при наличии мощных компьютеров, технологический расчет можно выполнять без применения критериальных методик. Расчет процессов по критериальным методикам менее физически обоснован по сравнению с решением дифференциальных уравнений гидродинамики численным методом (методом конечных объемов).

3. Система дифференциальных уравнений гидродинамики, состоящая из уравнения непрерывности, уравнений Навье-Стокса и уравнения переноса тепла, дополняется дифференциальными уравнениями массообмена и химической кинетики (например, уравнениями диффузии) в зависимости от рассчитываемого технологического процесса.

Литература

1. Касаткин А.Г. Основные процессы и аппараты химической технологии. – М.: Химия, 1973. – 752 с.

2. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. – изд.3-е. М.: Наука. 1986. 736 с. Теоретическая физика. т.VI.

Перейти на страницу:

Похожие книги

Ошибки в оценке науки, или Как правильно использовать библиометрию
Ошибки в оценке науки, или Как правильно использовать библиометрию

Ив Жэнгра — профессор Квебекского университета в Монреале, один из основателей и научный директор канадской Обсерватории наук и технологий. В предлагаемой книге излагается ретроспективный взгляд на успехи и провалы наукометрических проектов, связанных с оценкой научной деятельности, использованием баз цитирования и бенчмаркинга. Автор в краткой и доступной форме излагает логику, историю и типичные ошибки в применении этих инструментов. Его позиция: несмотря на очевидную аналитическую ценность наукометрии в условиях стремительного роста и дифференциации научных направлений, попытки применить ее к оценке эффективности работы отдельных научных учреждений на коротких временных интервалах почти с неизбежностью приводят к манипулированию наукометрическими показателями, направленному на искусственное завышение позиций в рейтингах. Основной текст книги дополнен новой статьей Жэнгра со сходной тематикой и эссе, написанным в соавторстве с Олесей Кирчик и Венсаном Ларивьером, об уровне заметности советских и российских научных публикаций в международном индексе цитирования Web of Science. Издание будет интересно как научным администраторам, так и ученым, пребывающим в ситуации реформы системы оценки научной эффективности.

Ив Жэнгра

Технические науки
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки
Городской Пассажирский Транспорт Санкт-Петербурга: Политика, Стратегия, Экономика (1991-2014 гг.)
Городской Пассажирский Транспорт Санкт-Петербурга: Политика, Стратегия, Экономика (1991-2014 гг.)

Монография посвящена актуальным вопросам регулирования развития городского пассажирского транспорта Санкт-Петербурга. Рассматриваются вопросы реформирования городского пассажирского транспорта в период с 1991 по 2014 годы. Анализируется отечественный и зарубежный опыт управления, организации и финансирования перевозок городским пассажирским транспортом. Монография предназначена для научных работников и специалистов, занимающихся проблемами городского пассажирского транспорта, студентов и аспирантов, преподавателей экономических вузов и факультетов, предпринимателей и руководителей коммерческих предприятий и организаций сферы городского транспорта, представителей органов законодательной и исполнительной власти на региональном уровне. Автор заранее признателен тем читателям, которые найдут возможным высказать свои соображения по существу затронутых в монографии вопросов и укажут пути устранения недостатков, которых, вероятно, не лишена предлагаемая работа.

Владимир Анатольевич Федоров

Экономика / Технические науки / Прочая научная литература / Внешнеэкономическая деятельность