Читаем Темные данные. Практическое руководство по принятию правильных решений в мире недостающих данных полностью

В 2007 г. бутылка из партии 1852 г. была выставлена на аукционе eBay со стартовой ценой $299. Продавец, у которого она хранилась в течение 50 лет, неправильно написал название пива, пропустив одну «р» в слове «Allsopp». Как следствие, предмет не обнаруживался поисковыми запросами любителей винтажного пива, так что поступило только две заявки. Из них победила заявка 25-летнего Даниэля Вудула, который предложил целых $304. Стремясь определить ценность покупки, Вудул тут же вновь выставил бутылку на продажу, но на этот раз с правильным названием. В ответ было подано 157 заявок с максимально предложенной ценой $503 300.

В этом случае одна пропущенная буква стоила полмиллиона долларов[11]. Это наглядный пример того, что потеря информации может привести к значительным последствиям. Как мы увидим далее, полмиллиона долларов – ничто по сравнению с убытками в других ситуациях, связанных с отсутствием данных. Они способны разрушать судьбы, уничтожать компании и, как в случае с Challenger, приводить к гибели людей. Короче говоря, отсутствующие данные важны.

В случае с Arctic Ale чуть большее внимание помогло бы избежать проблемы. Небрежность, безусловно, одна из самых распространенных причин появления темных данных, но далеко не единственная. Неприятный факт заключается в том, что данные могут стать темными по очень широкому ряду причин, и далее в книге мы увидим это.

Заманчиво считать темные данные исключительно тем, что можно было бы получить, но по каким-то причинам не удалось. Безусловно, это самый очевидный вид темных данных. Отсутствующие данные по заработной плате в опросе, в котором часть респондентов отказалась разглашать эту информацию, конечно, являются темными данными, но также ими является и уровень заработной платы безработных, которые не получают ее и, следовательно, просто не могут назвать. Ошибки измерения и неточности скрывают истинные значения; обобщая данные (например, вычисляя средние значения), мы теряем детали; неверные формулировки запросов искажают смысл того, что мы хотим узнать. В более общем понимании любую неизвестную характеристику некоей генеральной совокупности (статистики часто используют термин «параметр») можно рассматривать как темные данные.

Поскольку число возможных причин возникновения темных данных, по сути, не ограничено, знание того, на что следует обращать внимание, является чрезвычайно важным для предотвращения ошибок и просчетов. Именно с этой целью в нашей книге и представлено описание DD-типов

. Они не охватывают все возможные причины (например, небрежность, допускающую включение в окончательный результат исследования данных пациентов, которые наблюдались недостаточно длительное время), но обеспечивают более общую систематику (например, проводят различие между данными, о которых мы знаем, что они отсутствуют, и данными, о которых мы этого не знаем). Понимание этих DD-типов может помочь вам защититься от ошибок, оплошностей и угроз, вытекающих из самого факта незнания. В этой книге представлены, а в главе 10 обобщены следующие DD-типы:

 DD-тип 1: данные, о которых мы знаем, что они отсутствуют;

 DD-тип 2: данные, о которых мы не знаем, что они отсутствуют;

 DD-тип 3: выборочные факты;

 DD-тип 4: самоотбор;

 DD-тип 5: неизвестный определяющий фактор;

 DD-тип 6: данные, которые могли бы существовать;

 DD-тип 7: данные, меняющиеся со временем;

 DD-тип 8: неверно определяемые данные;

 DD-тип 9: обобщение данных;

 DD-тип 10: ошибки измерения и неопределенность;

 DD-тип 11: искажения обратной связи и уловки;

 DD-тип 12: информационная асимметрия;

 DD-тип 13: намеренно затемненные данные;

 DD-тип 14: фальшивые и синтетические данные;

 DD-тип 15: экстраполяция за пределы ваших данных.

Глава 2

Обнаружение темных данных

Что мы собираем, а что нет

Темные данные со всех сторон

Данные не возникают сами собой. Они не существуют с начала времен, ожидая, пока их проанализируют. Кто-то должен собрать их. И разные методы сбора данных, как вы догадываетесь, порождают разные типы темных данных.

В этой главе мы рассмотрим три основных метода создания наборов данных, а также пути возникновения темных данных, связанные с каждым из них. Следующая глава посвящена дополнительным осложнениям, которые темные данные могут вызывать в разных ситуациях.

Итак, вот три основные стратегии создания наборов данных.

Перейти на страницу:

Похожие книги

Стив Джобс. Уроки лидерства
Стив Джобс. Уроки лидерства

Эта книга – редкая возможность увидеть Стива Джобса таким, каким его видели лишь его самые близкие сотрудники, и разгадать загадку этого легендарного человека. Это возможность понять и освоить оригинальный стиль лидерства Джобса, благодаря которому Apple стала одной из величайших компаний и смогла выпускать продукты, изменившие нашу жизнь. Автор книги, Джей Эллиот, бывший старший вице-президент компании Apple, долгое время работал бок о бок со Стивом Джобсом и сформулировал главные уроки «iЛидерства», которые помогут совершить прорыв компании любого размера и из любой отрасли. Интуитивный и творческий подход Джобса, о котором рассказывается в этой книге, позволит вам преобразить свой бизнес и свою жизнь.Для широкого круга читателей – для всех, кто хочет воспользоваться уроками выдающегося бизнес-лидера.

Виктория Шилкина , Вильям Л Саймон , Вильям Л. Саймон , Джей Эллиот

Деловая литература / Биографии и Мемуары / Публицистика / Прочая компьютерная литература / Управление, подбор персонала / Документальное / Финансы и бизнес / Книги по IT
Хакеры: Герои компьютерной революции
Хакеры: Герои компьютерной революции

Как-то незаметно получилось, что за последние годы достаточно большое количество значений слова «хакер»: «компьютерный гений — озорник — любитель — специалист — исследователь» постепенно сжалось до «компьютерного хулигана — преступника». Mожно только «порадоваться» за труды журналистов околокомпьютерных и не очень изданий во всем мире, а также голливудских режиссеров, прививших умам неискушенных сограждан именно такое видение мира.Но, к счастью, так было не всегда. Эта книга позволяет вернуться к тем дням, когда все это еще только начиналось. К тем чистым и немного наивным ощущениям первоткрывателей, которым в руки попали удивительные игрушки, гигантские по размерам и стоимости...Как начинал Билл Гейтс? Как зарождался Apple? Замечательная коллекция персонажей шумно исследующих киберпространство, в котором до них еще никто не бывал, будет интересна не только специалистам но и простому читателю.

Стивен Леви

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT