Читаем Темные данные. Практическое руководство по принятию правильных решений в мире недостающих данных полностью

Итак, вот три основные стратегии создания наборов данных.

● Сбор данных обо всех интересующих нас объектах.

Именно к этому стремятся, например, во время переписи населения. Точно так же инвентаризации преследуют цель максимально детализировать все позиции на складе или в любом другом месте. В 2018 г. ежегодная инвентаризация в лондонском зоопарке, которая занимает около недели, показала, что в данной организации насчитывается 19 289 животных – от филиппинских крокодилов до беличьих обезьян, пингвинов Гумбольдта и двугорбых верблюдов (в случае муравьев, пчел и других социальных насекомых подсчитывались колонии). В главе 1 мы уже отмечали, что супермаркеты собирают данные обо всех покупках. То же самое касается налогов, операций по кредитным картам и персонала. Не менее подробно регистрируются спортивная статистика, книги на полках библиотек, цены в магазинах и многое другое. Во всех этих примерах каждая единица – будь то объект или человек – детализируется для формирования набора данных.

● Сбор данных о некоторых элементах совокупности.

Альтернативой полной переписи населения является сбор данных в рамках ограниченной выборки. Репрезентативная выборка крайне важна в нашем контексте, и мы подробно рассмотрим ее взаимосвязь с проблемой темных данных. Проще говоря, порой приходится собирать только те данные, которые легче собрать. Чтобы понять, как ведут себя покупатели в принципе, вы можете понаблюдать за теми, кто пришел в магазин сегодня. Для того чтобы узнать, сколько времени у вас отнимает дорога до работы, вы можете просто ежедневно на протяжении месяца следить за продолжительностью поездки. Бывают ситуации, когда просто не нужно измерять все: чтобы увидеть динамику изменения цен на продукты питания, вам не нужна информация о каждой покупке, а для определения среднего веса песчинки ни к чему взвешивать каждую из них. В главе 1 мы уже видели, что само понятие «измерение всего» может быть лишено смысла. Полнота данных, например о вашем росте, будет ограничена только теми измерениями, которые вы проведете.

Несколько лет назад, еще до начала эры легкодоступных больших наборов данных, мы с коллегами опубликовали «Справочник по небольшим наборам данных»[12], включающий в себя 510 массивов реальных данных, на примере которых преподаватели могут иллюстрировать концепции и методы статистики. В справочнике приведены результаты 20 000 бросков игральной кости, данные о сроках беременности, толщине роговицы глаза, длительности нервных импульсов и множество других наборов данных, очень немногие из которых описывают генеральные совокупности целиком.

● Изменение условий.

Первые две стратегии помогают собрать так называемые данные наблюдения. Вы просто измеряете значения, которые присущи объектам или людям, никак не меняя условия, в которых проводятся измерения. Вы не даете людям лекарств, чтобы отследить их реакцию, не просите выполнить какое-либо задание, чтобы подсчитать, сколько времени это займет, не меняете удобрения, чтобы посмотреть, какие из них дают самый обильный урожай, не пробуете разную температуру воды, чтобы понять, как она влияет на вкус чая. Если же вы меняете условия сбора данных, иначе говоря, вмешиваетесь, то такие данные называются экспериментальными. Экспериментальные данные особенно важны, потому что они могут дать информацию о контрфактуальности (DD-тип 6: данные, которые могли бы существовать

), упомянутой в главе 1.

Хотя у всех трех методов сбора данных есть немало общих недостатков, связанных с темными данными, для каждого из них характерны и свои особые проблемы. Мы начнем с рассмотрения первой стратегии сбора данных, претендующей на полный охват.

Извлечение, отбор и самоотбор данных

Компьютеры оказали революционное влияние на все аспекты нашей жизни. Где-то это влияние проявляется очевидным образом, например в программном обеспечении, которое я использую для подготовки рукописи этой книги, или в системе бронирования авиабилетов, а где-то оно не так заметно, если речь идет, скажем, о встроенных компьютерах, управляющих тормозами и двигателем автомобиля, или о начинке какого-нибудь копировального аппарата.

Но независимо от того, очевидна или нет роль компьютеров, во всех случаях в машины поступают данные – измерения, сигналы, команды – и обрабатываются ими, чтобы принять решение или выполнить какую-либо операцию. Казалось бы, по завершении операции можно попрощаться с данными, однако зачастую этого не происходит. Данные все чаще сохраняют, отправляют в базы данных и там аккумулируют. То же самое происходит и с побочными или, как их еще называют, выхлопными данными (по аналогии с выхлопными газами), которые в дальнейшем помогают добиться лучшего понимания, усовершенствовать системы или восстановить картину событий, если что-то пошло не так. Черный ящик в самолете является классическим примером такого рода систем.

Перейти на страницу:

Похожие книги

Теория праздного класса
Теория праздного класса

Автор — крупный американский экономист и социолог является представителем критического, буржуазно-реформистского направления в американской политической экономии. Взгляды Веблена противоречивы и сочетают критику многих сторон капиталистического способа производства с мелкобуржуазным прожектерством и утопизмом. В рамках капитализма Веблен противопоставлял две группы: бизнесменов, занятых в основном спекулятивными операциями, и технических специалистов, без которых невозможно функционирование «индустриальной системы». Первую группу Веблен рассматривал как реакционную и вредную для общества и считал необходимым отстранить ее от материального производства. Веблен предлагал передать руководство хозяйством и всем обществом производственно-технической интеллигенции. Автор выступал с резкой критикой капитализма, финансовой олигархии, праздного класса. В русском переводе публикуется впервые.Рассчитана на научных работников, преподавателей общественных наук, специалистов в области буржуазных экономических теорий.

Торстейн Веблен

История / Прочая старинная литература / Финансы и бизнес / Древние книги / Экономика