Механика Ньютона, электродинамика Максвелла-Лоренца-Эйнштейна, теория гравитации Эйнштейна и геометризированная электродинамика построены так, что используемые этими теориями системы отсчета образуют множество относительных поступательных координат (см.
Таблица № 1.
Легко видеть, что в эту таблицу не входят вращательные координаты ф
1, ф 2, ф 3. Это и понятно, поскольку все перечисленные в таблице системы отсчета по определению не вращаются. Поэтому можно сказать, что до сих пор теория относительности развивалась какСледующий шаг в развитии теории относительности потребовал введения многообразия относительных координат ускоренных систем отсчета, которые испытывают вращение при своем движении. Такие системы отсчета движутся не только в трансляционных координатах, но также и во вращательных. Теория, в которой используются вращательные координаты, требует увеличения размерности пространства событий. Например, если рассматриваются трехмерные вращающиеся системы отсчета с трансляционными координатами х, у и z, то они дополнительно описываются тремя вращательными координатами. В этом случае пространство событий
Трансляционные и вращательные координаты существенно отличаются по своим свойствам. Трансляционные координаты относятся к классу голономных (или интегрируемых). Движение в голономных координатах характерно тем, что оно
не зависитот направления пути в одну и ту же точку пространства.Рис. 8.
Результат движения в голономных координатах х, у,и zне завит от последовательности пути движения.Наглядно это свойство изображено на
В отличие от голономных координат
х, у, и z, при движении в неголономных координатах ф 1, ф 2, ф 3результат двух поворотов на конечные углы зависит от последовательности этих поворотов. Для иллюстрации этого утверждения, рассмотрим два последовательных поворота вокруг осей х, и z на углы 90°Рис. 9.
Два последовательных поворота на угол 180°:а) - поворот на 90°по часовой стрелке вокруг оси z; б) - то же, вокруг оси у; в) - результат двух последовательных поворотов.Рис. 10.
Смена порядка последовательных поворота на угол 180°: а) -поворот на 90°по часовой стрелке вокруг осиИз рисунков видно, что результат двух конечных поворотов вокруг осей у и z зависит от последовательности этих поворотов (положения квадрата со звездочкой
1.10. Торсионные поля и относительность вращения.
Самый простой пример вращательного движения представляет собой вращающийся диск.