Читаем Теория струн и скрытые измерения Вселенной полностью

Эта теорема очень похожа на доказательство гипотезы Калаби, поскольку в обоих случаях мы стремились свести задачу, включающую систему неприятных нелинейных уравнений, с которыми мы не умеем работать, к геометрической задаче, которую мы умеем решать. В случае Калаби я никогда не решал соответствующие дифференциальные уравнения в явном виде. Я только показал, что если многообразие удовлетворяет определенным условиям (компактное, кэлерово, с исчезающим первым классом Черна), что можно проверить с помощью стандартных процедур алгебраической геометрии, то должно существовать решение таких уравнений в форме риччи-плоской метрики. DUY работает аналогичным образом, предполагая наличие такого расслоения, точнее, устойчивости наклона, чтобы решения эрмитовых уравнений Янга-Миллса всегда существовали. В алгебраической геометрии также разработаны методы для оценки устойчивости расслоения, хотя это оказалось намного сложнее, чем проверить, является первый класс Черна для многообразия исчезающим или нет.

Некоторые люди, в том числе и физики, не знакомые с этой областью математики, находят DUY удивительным, поскольку на первый взгляд условия расслоения не имеют ничего общего с дифференциальными уравнениями, которые вы надеетесь решить.

Но для меня эта теорема не была удивительной, поскольку, если уж на то пошло, она казалась мне естественным продолжением гипотезы Калаби. Все доказательство теоремы Калаби посвящено многообразию Калаби-Яу, тогда как теорема DUY вся посвящена расслоению. Вы ищете метрику расслоения, но метрика многообразия уже дана вам как часть исходной информации. По желанию можно выбрать любую лежащую в основе метрику, включая метрику Калаби-Яу.

Пункт пересечения между гипотезой Калаби и теоремой DUY представляет собой касательное расслоение. И вот почему: когда вы докажете существование многообразий Калаби-Яу, то получите не только эти многообразия, но также их касательные расслоения, так как каждое многообразие имеет расслоение. Поскольку касательное расслоение определяется многообразием Калаби-Яу, оно наследует свою метрику от родительского многообразия – в данном случае от многообразия Калаби-Яу. Другими словами, метрика касательного расслоения должна удовлетворять уравнениям Калаби-Яу. При этом оказывается, что для касательного расслоения эрмитовы уравнения Янга-Миллса те же, что и для уравнений Калаби-Яу, при условии, что фоновая метрика, выбранная вами, является метрикой Калаби-Яу. Следовательно, если касательное расслоение удовлетворяет уравнениям Калаби-Яу, оно также автоматически удовлетворяет эрмитовым уравнениям Янга-Миллса. В результате получается, что касательное расслоение фактически является первым частным случаем теоремы DUY – первым решением, несмотря на то что доказательство гипотезы Калаби было получено за десять лет до теоремы DUY.

Рис. 9.4.

Карен Уленбек (фото любезно предоставлено Техасским университетом в Остине)

Однако это не самое интересное в DUY. Истинная сила DUY состоит в предписании условий (снова в отношении устойчивости), которым должны удовлетворять другиерасслоения (а не только касательное расслоение), чтобы решения эрмитовых уравнений Янга-Миллса существовали.

Еще до выхода нашего труда в 1986 году я говорил Эдварду Виттену, что теория Янга-Миллса, похоже, естественным образом согласуется с многообразиями Калаби-Яу и поэтому должна быть важна для физиков. Виттен вначале не понял актуальности теоремы, но примерно через год, продолжив работу, он пошел еще дальше, показав, как этот подход можно использовать в компактификациях Калаби-Яу. Когда вышел труд Виттена, то благодаря его авторитету в этой области применением DUY к теории струн стали интересоваться и другие исследователи, что служит еще одним примером того, как геометрия взяла инициативу в свои руки, несмотря на то что она не всегда шла этим путем.

Теперь давайте посмотрим, как можно использовать эту геометрию и топологию для получения физики элементарных частиц из теории струн. Первый шаг заключается в выборе многообразия Калаби-Яу, но подходит не всякое многообразие. Если мы хотим использовать определенные методы, которые в прошлом доказали свою эффективность, нам необходимо выбрать неодносвязное многообразие, то есть многообразие с нетривиальной фундаментальной группой. Я надеюсь, вы помните, – это означает, что вы можете найти в таком пространстве петлю, которую нельзя стянуть в точку. Другими словами, многообразие должно быть больше похоже на тор, а не на сферу, и иметь, по крайней мере, одну дырку. Наличие дырки, цикла или петли, бесспорно, оказывает влияние на геометрию и топологию самого расслоения, что, в свою очередь, влияет на физику.

Перейти на страницу:

Похожие книги

История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука
Чудо-оружие СССР. Тайны советского оружия
Чудо-оружие СССР. Тайны советского оружия

В XX веке в нашей стране в обстановке строжайшей секретности были созданы уникальные системы вооружения, действие которых иной раз более впечатляло, чем фантастические романы того времени. О некоторых из них и пойдет речь в этой книге. Автор не счел нужным что-либо преувеличивать или недоговаривать. В книге объективно представлены все достоинства, недостатки и перспективы возможного применения того или иного типа оружия. Читатель узнает, как маршал Тухачевский готовился к «войне роботов», как и почему взлетели на воздух дома на Крещатике в сентябре 1941 г., об испытаниях самолета-невидимки и его связи с Филадельфийским экспериментом, об атомных и ракетных секретах Лаврентия и Серго Берия, о работах по созданию флота из летающих лодок с атомными двигателями, способных доставить термоядерные заряды в любую точку земного шара, и о многом другом.

Александр Борисович Широкорад

История / Технические науки / Образование и наука