Читаем "Теорія та методика навчання математики, фізики, інформатики. Том-1" полностью

Найпершими поняттями, з якими зустрічаються учні при вивченні початків стохастики є поняття стохастичного експериментута елементарних подій(тобто усіх можливих наслідків стохастичного експерименту). В свою чергу усі елементарні події утворюють множину елементарних подій, будь-яка підмножина якої є певною подією. Ці поняття можуть вважатися первісними або ж певним чином означуватись, але в будь-якому випадку автори при цьому використовують наступні терміни:


Поняття

Терміни

%

Поняття

Терміни

%

Стохастичний експеримент

Стохастичний експеримент

15

Елементарні події

Елементарні наслідки

33

Експеримент

83

Елементарні події

72

Випрошування

85

Наслідки

36

Дослід

74

Випадки

6

Спостереження

37

Шанси

6

Висновки щодо кількості термінів, яка використовується автором в межах одного посібника

Поняття=один термін

Поняття=два терміни

Поняття = три терміни

23,5

56,4

20,1

Поняття=один термін

Поняття=два терміни

Поняття = три терміни

Наявність символіки

84

16

0

58


Що ж стосується поняття множини (56,6%) (або простору (57,1%), або сукупності (7,4%)) елементарних подій, то окрім синонімічного аспекту проблеми (один термін – 85,3%; два терміни – 14,7%) тут є присутньою і омонімічна. Так деякі автори вважають, що до складу множини елементарних подій = 1,  2,  3, …,  n можуть входити лише елементарні події (69,6%). Інші ж вважають, що вона може складатись і із складених подій (30,4%), таким чином ототожнюючи поняття множини елементарних подій та повної групи (системи) подій.

В свою чергу при розгляді поняття повна група (система) подій виникає аналогічна ситуація. Тобто також маємо як синонімічний так і омонімічний аспект проблеми. Хоча тут слід зауважити, що концепції викладання матеріалу деякими авторами взагалі не передбачають введення означеного поняття (17,6%).

Так, при введенні повної групи подій деякі автори вважають, що вона повинна складатися виключно з несумісних подій (21,4%), інші ж не роблять таких обмежень, тобто вважають, що до складу повної групи можуть входити будь-які події. При цьому автори можуть вводити одне з понять “повна група подій” (47,1%) або “повна група попарно несумісних подій” (11,7%), або ж обидва ці поняття (17,6%).

Повертаючись до поняття події, можна відмітити, що внаслідок певного тлумачення деякі автори ототожнюють його з поняттям випадкової події, а інші ні. В результаті цього виникають два типи класифікації подій:

Події (55,6 %)

Достовірні події (70,5 %)

або

вірогідні події ( 29,5%)


Випадкові події


Неможливі події

Події = випадкові події (44,4%)

Як видно зі схеми, для різновидів подій також має місце синонімічна проблема. Але якщо в термінологічному аспекті вона стосується лише достовірних подій, то в символічному не залишаються поза її увагою й неможливі події. Так ті з авторів, які є прибічниками проведення аналогій між подіями та множинами використовують символи ,  (27,2%), інші ж або взагалі не дають ніяких вказівок щодо символіки (42,6%), або використовують символи U,V (30,2%).

Після вивчення видів подій автори посібників, як правило, переходять до розгляду відносин, які між ними існують. Тут також існує певна синонімічна варіативність.

Поняття

Терміни

%

Поняття

Терміни

%

Еквівалентні події

А=В

Еквівалентні події

56

Подія А спричинює подію В

АВ – 66,7 %;

АВ – 16,7%

– – 16,6%

В – окремий випадок А

16,7

Рівні події

32

В – наслідок А

33,4

Рівносильні події

47

В тягне за собою А

16,7

Із А слідує В

16,7

А спричиняє В

33,4


Поняття еквівалентності подій деякими авторами взагалі не вводиться (57,7%) в своїх посібниках. В тих же посібниках, де воно вводиться можуть використовуватись або один термін (57,1%), або два терміни (28,6%), або й три терміни (14,3%) в межах одного посібника. Що ж стосується поняття “наслідок події”, то воно також може не вводитись багатьма авторами в своїх посібниках (64,8%). В тих же посібниках, де воно вводиться можуть використовуватись або один термін (61,5 %), або два терміни (39,5%).

Ще одним питанням, яке безпосередньо стосується подій, є питання виконання дій над подіями, зокрема суми та добутку. Тут наявність синонімів має місце як для термінів так і для символів.

Символи

%

Поняття

Терміни

%

Кількість

С

%

Т

%

"або"

11,8

Сума подій

Сума

88,2

0

0

11,8

""

70,6

Об’єднання

52,9

1

23,5

1

35,3

"+"

94,1

2

76,5

2

52,9

"і"

11,8

Добуток подій

Добуток

76,5

0

0

11,8

""

70,6

Перетин

29,4

1

23,5

1

52,9

""

94,1

Суміщення

17,6

2

76,5

2

35,3


Ключовим поняттям стохастики є поняття ймовірності, розглядання якого може відбуватись за допомогою п’яти видів означень: інтуїтивне, класичне, статистичне, геометричне та аксіоматичне. Зупинимо свою увагу на статистичному (емпіричному) означенні. Як відомо, статистичне означення ймовірності базується на понятті частоти, якому властива як синонімічна, так і омонімічна сторона проблеми.


Поняття

Термін

%

Термін

Поняття

%

Частота

Частота

41,2

Частота

m-число появ деякої події при проведенні певної кількості випробувань

14,3

Частість

17,6

Відносна частота

41,2

Перейти на страницу:

Похожие книги