Читаем The Science of Interstellar полностью

constructing images of, 30–31, 75–87, 96–99; see also accretion disks around black holes; gravitational lensing by black holes

accretion disk, 94–99; see also accretion disks around black holes

lack of jet, 94; see also jets from black holes

appearance of, from Miller’s planet, 168–169, 169

appearance of, from Mann’s planet, 175

appearance of, from inside event horizon, 250

typical orbits around, 72, 101

lethality of environment, 100–102

vibrations of, 170–173

volcano analogy, 239–240; see also critical orbit

see also black holes; event horizon; Miller’s planet

geometrodynamics, 154–155

global positioning system, see GPS

GOCE satellite (ESA), 216–217, 217

GPS, 36–37, 37, 208

GRACE satellite (NASA), 210

gravitational anomalies, historical examples:

anomalous precession of Mercury’s orbit, 34, 202–204

anomalous orbits of galaxies around each other—dark matter, 204–206

anomalous acceleration of universe’s expansion—dark energy, 206–207

gravitational anomalies in Interstellar:

origin of the idea for, 5

in Cooper’s landing a Ranger, 208

in GPS system failure, 208

harvesters gone haywire, 208

in the fall of dust, 208, 208

in tidal gravity (my extrapolation), 209–211, 209

in the strength of the Earth’s gravity, 216–217

in Gargantua’s vibrations (my extrapolation), 170–173

Professor Brand’s interest in, 212

harnessing of, to lift colonies off Earth, 32, 212, 221, 225, 273–275, 290

generated by bulk fields (my extrapolation), 32–33, 213–218, 296

described by Professor Brand’s equation, 220–222

quantum gravity laws, as key to, 225

gravitational anomalies on Earth:

searches for, 32, 207

could arise from fields controlling gravity’s strength, 296

Brans-Dicke theory predicts, 296

gravitational field and field lines, 25–26; see also inverse square law for gravity; tendex lines; tidal gravity

gravitational lensing:

defined, 30

by dark matter, observed, 205

gravitational lensing by black holes, 31, 50, 50, 75, 79

shadow’s edge and ring of fire, 76–78

by nonspinning black hole, 79–80

by fast-spinning black hole, 80–86

Einstein rings, 79–82

star-streaming patterns as camera moves around hole, 76, 78–82, 85–86

computation of, for Interstellar, 83–86

lensing of one black hole by another black hole, 86–87

gravitational lensing by wormholes, 141, 142–145, 143, 145; see also wormhole in Interstellar; wormholes

gravitational slingshots:

NASA’s, in the solar system, 72–74, 117

references on, 279–280

Endurance around Mars, 74

necessary for spacecraft navigation near Gargantua, 67–68

IMBH needed, 69–71

for Ranger’s trip from Endurance to Miller’s planet, 68–70

for Endurance’s trip to Mann’s planet, 176

for Endurance’s trip to Edmunds’ planet, 237

imaged by gravitational lensing, 86–87

in a black-hole binary system, for intergalactic travel, 120–123

video game based on, 280, 295

gravitational waves:

what they are, 146, 151–153

tendex lines, 151–153

role in my extrapolation of Interstellar—discovering the wormhole, 146–150

gravitational waveforms, 147–148, 147, 155

from neutron star spiraling into black hole, 148–149

from merging black holes, 151–152, 151

from a mountain on a spinning neutron star, 149–150

from a spinning, deformed black hole, 152

from the big-bang birth of our universe, 155–157

gravity gradiometer, 209–211, 210


Halley’s comet, 71, 175

Hollywood, culture of, 1–14, 277


IMBH (intermediate-mass black hole), 69–71, 86–87, 86, 176

Interstellar:

genesis of, 1–9

my science guidelines for, 4, 8, 9, 43

visual effects in, 10–12, 30–31, 75–87, 94–99, 138–145

movie sets for, 13–14

see also Interstellar, scenes in

Interstellar, scenes in:

opening scene, Cooper trying to land a Ranger, 208

life on Earth (“Cooper’s world”), 106–107, 107

blight in crops on Earth, 31, 105–106, 111, 112, 114; see also

blight in crops

gravitational anomalies on Earth:

in opening scene of movie, 208

harvesters gone haywire, falling books and dust, 208

in Murph’s bedroom, 202, 208–209, 211

see also gravitational anomalies in Interstellar

Cooper at NASA, 133, 273

Endurance’s trip from Earth to Saturn, 68, 74, 117

Romilly explains wormholes, 136

the wormhole, 145, 208

Endurance’s trip through the wormhole, 144

Ranger’s trip from Endurance to Miller’s planet, 68–70, 168, 169

crew on Miller’s planet, 58–59, 161, 164–165, 165

crew’s return to Endurance and to Romilly, 170

choice of where to go after Miller’s planet, 100

Endurance’s trip to Mann’s planet, 176

Ranger scraping ice clouds when landing on Mann’s planet, 177

crew on Mann’s planet, 178–179

Dr. Mann describing Professor’s struggle to understand gravity, 229

Romilly urging Cooper to seek information from Gargantua’s singularities, 234

scenes back on Earth:

the Professor and Murph in the Professor’s office, 213, 221

the Professor dying, 222

Endurance’s explosion above Mann’s planet, 181–182, 181

Перейти на страницу:

Похожие книги

Повседневная жизнь российских космонавтов
Повседневная жизнь российских космонавтов

Книга, представленная на суд читателя в год пятидесятилетнего юбилея первого полета человека в космос, совершенного Ю. А. Гагариным, — не взгляд со стороны. Ее автор — удивительно разносторонний человек. Герой Российской Федерации, летчик-космонавт Ю. М. Батурин хорошо известен также как ученый и журналист. Но главное — он сам прекрасно знает увлекательный и героический мир, о котором пишет, жил в нем с середины 1990-х годов до 2009 года.Книга, рассчитанная на широкий круг читателей, не только познавательна. Она поднимает острые вопросы, от решения которых зависит дальнейшая судьба отечественной космонавтики. Есть ли еще у России шансы преодолеть ухабы на пути к звездам или все лучшее осталось в прошлом? Прочитав книгу, вы сами сможете судить об этом.Большинство цветных фотографий сделано автором в ходе тренировок и в космических полетах.

Юрий Михайлович Батурин

Астрономия и Космос / История / Образование и наука