Но весной 1995 г., без всякого предупреждения, эти скромные надежды были с лихвой вознаграждены. Опираясь на работы ряда физиков (включая Криса Халла, Пола Таунсенда, Ашока Сена, Майкла Даффа, Джона Шварца и многих других), Эдвард Виттен, в течение двух десятилетий являвшийся самым знаменитым струнным теоретиком, выявил скрытое единство, связывающее все пять версий теории струн. Виттен показал, что эти пять версий представляют собой не пять различных теорий, а всего лишь пять различных математических подходов к анализу
Это революционное открытие явилось большим шагом вперёд. Как Виттен показал в одной из самых выдающихся работ в этой области (и в следующей важной работе вместе с Петром Хоравой), теория струн
На рис. 13.1 схематически представлен статус пяти теорий струн до открытия Виттена и после него; этот образ всегда полезно иметь в виду. Он иллюстрирует тот факт, что M-теория сама по себе не является новым подходом, но, «разгоняя облака», она обещает дать более тонкую и полную формулировку физических законов, чем позволяет дать любая из пяти версий теории струн. M-теория соединяет и охватывает все пять теорий струн, показывая, что каждая из них является частью более великого теоретического синтеза.
Рис. 13.1.
(Мощь перевода
Хотя рис. 13.1 схематически передаёт суть открытия Виттена, но при взгляде на этот рисунок может возникнуть недоумение, что же особенного в этом открытии. До достижения Виттена исследователи думали, что существует пять разных версий теории струн; после этого достижения они перестали так думать. Но если вы никогда не знали о пяти предположительно разных теориях струн, то почему вы должны удивляться тому, что самый умный струнный теоретик показал, что они вовсе не разные? Иными словами, почему открытие Виттена столь революционно и не является всего лишь простой корректировкой бытовавшего ранее неверного понимания?
А вот почему. В течение нескольких последних десятилетий струнные теоретики постоянно сталкивались с одной математической проблемой. Из-за того, что вывести точные уравнения любой из пяти теорий струн, а затем анализировать их, оказалось очень трудным делом, исследования в основном базировались на приближённых уравнениях, с которыми работать гораздо проще. Хотя есть веские основания считать, что во многих случаях приближённые уравнения должны давать ответы, близкие к решениям точных уравнений, но всё же приближения, как и переводы, всегда что-то упускают. По этой причине определённые ключевые проблемы оказываются вне досягаемости математики приближённых уравнений, что существенно мешает прогрессу.