Теперь рассчитаем поля, встречающиеся во многих физических задачах, когда речь идет о распределении масс
. Мы пока не рассматривали распределения масс, а занимались только отдельными частицами. Но интересно рассчитать и поля, образуемые более чем одной частицей. Для начала найдем силу притяжения со стороны плоского пласта вещества бесконечной протяженности. Сила притяжения единичной массы в данной точке Р (фиг. 13.5), конечно, направлена к плоскости.
Фиг. 13.5. Сила притяжения материальной точки материальной плоскостью.
Расстояние от точки до плоскости есть a
, а масса единицы площади этой плоскости есть μ. Пусть μ будет постоянной: слой однороден. Какой же величины поле dC создается массой dm, удаленной от О не ближе, чем на p, и не дальше, чем на p+dp (О — это точка плоскости, ближайшая к Р)? Ответ: dC=G(dmr/r3). Но оно, это поле, направлено вдоль r, а мы понимаем, что из трех составляющих С после сложения всех dC должна остаться лишь x-составляющая. Она равна
Все массы dm
, которые находятся на одном и том же расстоянии r от Р, дадут одно и то же значение dCx, так что за dm можно сразу принять массу всего кольца между p и p+dp, т. е. dm=μ2πpdp (2πpdp — это площадь кольца радиусом p и шириной dp при dp≪p). Итак,
Но pdp=rdr из-за того, что r
2=p2+a2. Поэтому (13.17)
Стало быть, сила не зависит от расстояния а! Почему? Не ошиблись ли мы? Казалось бы, чем дальше от плоскости, тем сила слабее. Но нет! Если точка находится вплотную к плоскости, то большая часть вещества притягивает ее под неудачными углами, а если вдалеке, то у большей части вещества притяжение направлено прямее к плоскости. На любом расстоянии самая «влиятельная» часть плоскости лежит в некотором конусе. С удалением сила ослабляется обратно пропорционально квадрату расстояния, но в том же конусе под тем же углом оказывается больше вещества
, а рост количества вещества тоже пропорционален квадрату расстояния! Этот анализ может быть сделан более строгим, если заметить, что дифференциал вклада любого данного конуса не зависит от расстояния в результате противоположных изменений напряженности поля данной массы и количества самой этой массы (с ростом расстояния). Впрочем, на самом деле сила не постоянна, ибо на другой стороне плоскости она меняет знак.Мы решили, кстати, и задачу по электричеству: мы доказали, что у заряженной пластины, каждая единица площади которой несет заряд σ, электрическое поле равно σ/2ε0
и направлено от пластины, если она заряжена положительно, и к ней, если она заряжена отрицательно. Чтобы доказать это, надо просто вспомнить, что в законе тяготения G играет ту же роль, что 1/4πε0 в электричестве.А теперь пусть имеются две пластины, одна с положительным зарядом +σ, а другая с отрицательным -σ (на единицу площади), и пусть промежуток между ними равен D
. Каково поле этих пластин? Снаружи пластин поле равно нулю. Отчего? Оттого, что одна из них отталкивает, а другая притягивает и у обеих сила не зависит от расстояния; значит, силы всюду уничтожаются! А вот поле между пластинами вдвое больше, чем поле одной пластины, направлено оно от положительной пластины к отрицательной и равно Е=σ/ε0.Перейдем теперь к еще более интересному и важному вопросу; впрочем, мы давно уже ответили на него, предположив, что сила притяжения Земли в точке на ее поверхности или над нею такая же, как если бы вся масса Земли сосредоточилась в ее центре. Справедливость этого предположения не очевидна: ведь когда мы находимся у самой земли, какая-то часть ее массы очень к нам близка, а другая далека и т. д. Когда мы складываем действие всех таких масс, то кажется чудом, что в конце концов сила сводится к тому, что вся Земля сжалась в одну точку, стянулась к своему центру!
Мы теперь покажем, что это чудо обыкновенное; чтобы продемонстрировать это, разобьем Землю на тонкие сферические слои. Пусть вся масса сферы равна m. Давайте рассчитаем потенциальную энергию
частицы массы m' на расстоянии R от центра сферы (фиг. 13.6).
Фиг. 13.6. Тонкий сферический слой масс (или зарядов).
Мы увидим, что потенциальная энергия как раз такая, как если бы масса m
сферы вся собралась в ее центре. (Легче иметь дело с потенциальной энергией, чем с напряженностью поля: не нужно думать об углах, а просто складывать потенциальные энергии всех частей сферы.) Нарежем сферу на узкие пояски, и пусть x — расстояние плоскости пояска от центра сферы; тогда вся масса пояска толщиной dx находится на одном и том же расстоянии r от точки P, а потенциальная энергия притяжения этого пояска равна —Gm'dm/r. Сколько же массы содержится в пояске dx? Вот сколько:
где μ=m
/4πa2 — поверхностная плотность массы. (Вообще площадь поверхности шарового пояса пропорциональна его высоте.) Поэтому потенциальная энергия притяжения массы dm есть
Но мы видим, что
Значит,
или
Поэтому