Читаем Том 1. Механика, излучение и теплота полностью

Итак, у нас имеются два утверждения: 1) работа, выполняемая силой, равна изменению кинетической энергии системы, но 2) математически для консервативных сил выполненная работа равна минус изменению функции U, называемой потенциальной энергией. Как следствие этих утверждений возникает еще одно: если действуют только консервативные силы, сумма потенциальной U и кинетической Т энергий остается постоянной:

(14.2)

Рассмотрим формулу потенциальной энергии для ряда случаев. Если поле тяготения однородно, если мы не поднимаемся до высот, сравнимых с радиусом Земли, то сила постоянна и направлена вертикально, а работа равна просто произведению силы на расстояние по вертикали. Стало быть,

(14.3)

и за точку Р с нулевой потенциальной энергией можно принять любую точку на поверхности z=0. Но можно также говорить, что потенциальная энергия равна mg(z-6), если нам так уж этого хочется! Все результаты в нашем анализе останутся теми же, кроме того что потенциальная энергия на поверхности z=0 будет равна -mg6. Разницы никакой, ведь в расчет надо принимать только разности потенциальных энергий.

Энергия, необходимая для сжатия пружины на расстояние х от точки равновесия, равна

(14.4)

и нуль потенциальной энергии приходится на точку х=0, т. е. на равновесное состояние пружины. И здесь тоже мы можем добавить любую константу.

Потенциальная энергия тяготения точечных масс M и m на расстоянии r друг от друга равна

(14.5)

Константа здесь выбрана так, чтобы потенциал исчезал на бесконечности. Конечно, эту же формулу можно применить и к электрическим зарядам, поскольку закон один и тот же:

(14.6)

Давайте теперь поработаем с одной из этих формул, посмотрим, поняли ли мы их смысл.

Вопрос

: С какой скоростью должна отправиться ракета с Земли, чтобы покинуть ее?

Ответ: Сумма кинетической и потенциальной энергий должна быть постоянной; покинуть Землю — значит удалиться от нее на миллионы километров; если у ракеты только-только хватает сил, чтобы покинуть Землю, то надо предположить, что там, вдалеке, ее скорость будет равна нулю и что на бесконечности она будет едва-едва двигаться. Пусть а — радиус Земли, а M — ее масса. Кинетическая плюс потенциальная энергии первоначально были равны 1/2 mv2-GmM/a. В конце движения эти обе энергии должны сравняться. Кинетическую энергию в конце движения мы считаем нулевой, потому что тело еле движется (почти с нулевой скоростью), а потенциальная энергия равна величине GmM, деленной на бесконечность, т. е. опять нулевая. Значит, с одной стороны стоит разность двух нулей; поэтому квадрат скорости должен быть равен 2GM/

a. Но GM/a2 это как раз то, что называют ускорением силы тяжести g. Итак,

С какой скоростью должен двигаться искусственный спутник, чтобы не падать на Землю? Мы когда-то решали эту задачу и получили v2=GM/a. Значит, чтобы покинуть Землю, нужна скорость, в √2 большая, чем скорость вращения спутника вокруг Земли. Иными словами, чтобы улететь с Земли, нужно вдвое больше энергии (энергия пропорциональна квадрату скорости), чем чтобы облететь вокруг нее. Поэтому исторически сначала были совершены облеты искусственных спутников вокруг Земли, для чего понадобились скорости около 7,8 км/сек

. И только потом космические корабли были заброшены в мировое пространство; для этого потребовалось уже вдвое больше энергии, т. е. скорости около 11,2 км/сек.

Продолжим теперь наш обзор характеристик потенциальной энергии. Давайте рассмотрим взаимодействие двух молекул или двух атомов, например двух атомов кислорода. Когда они находятся далеко друг от друга, они притягиваются с силой, обратно пропорциональной седьмой степени расстояния, а при тесном сближении они сильно отталкиваются. Проинтегрировав минус седьмую степень расстояния, чтобы получить работу, мы увидим, что потенциальная энергия U (функция расстояния между атомами кислорода) изменяется как минус шестая степень расстояния (на больших расстояниях).

Если мы чертим некую кривую потенциальной энергии U(r) (фиг. 14.3), то при больших r она выглядит как r-6, а при достаточно малых r достигает минимума.

Фиг. 14.3. Потенциальная энергия взаимодействия двух атомов как функция расстояния между ними.


Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука