Читаем Том 1. Механика, излучение и теплота полностью

Для дальнейшего нам понадобится одна геометрическая формула: пусть дан треугольник, высота которого h мала, а основание d велико; тогда гипотенуза s (фиг. 27.1) больше основания (нам нужно это знать, чтобы вычислить разность времен на двух различных путях света).

Фиг. 27.1. Треугольник, высота, которого h меньше основания d, а гипотенуза s больше основания.


Насколько гипотенуза больше основания? Мы можем найти разность Δ=s-d несколькими способами. Например, s2-d2=

h2или (s-d)(s+d)=h2. Но s
-d=Δ, а s+d~2s. Таким образом,


(27.1)

Вот и все, что нам нужно знать из геометрии для изучения изображений, получаемых с помощью кривых поверхностей!

§ 2. Фокусное расстояние для сферической поверхности

Рассмотрим сначала простейший пример преломляющей поверхности, разделяющей две среды с разными показателями преломления (фиг. 27.2).

Фиг. 27.2. Фокусировка на преломляющей поверхности.


Случай произвольных показателей пусть разберет читатель самостоятельно; нам важно рассказать об идее, задача же достаточно проста и ее можно решить в любом частном случае. Итак, пусть слева скорость света равна 1, а справа 1/n, где n — показатель преломления. Свет в стекле идет медленнее в n раз.

Теперь представим себе точку О на расстоянии s от лицевой поверхности стекла и другую точку О' на расстоянии s' внутри стекла и попытаемся выбрать кривую поверхность так, чтобы каждый луч, вышедший из О и попавший на поверхность в Р, приходил в точку О'. Для этого нужно придать поверхности такую форму, чтобы сумма времени прохождения света на пути от О к Р (т. е. расстояние ОР, деленное на скорость света, равную единице) плюс n-О'Р, т.е. время на пути от Р к О', было постоянной величиной, не зависящей от положения точки Р. Это условие дает уравнение для определения поверхности. В результате получается весьма сложная поверхность четвертого порядка (читатель может вычислить ее для собственного удовольствия с помощью аналитической геометрии). Проще рассмотреть специальный случай s→∞, когда кривая получается второго порядка и ее легче определить. Интересно сравнить эту кривую с кривой для фокусирующего зеркала (когда свет приходил из бесконечности), которая, как вы помните, оказалась параболой.

Итак, нужную поверхность сделать нелегко; чтобы сфокусировать свет от одной точки в другую, нужна довольно сложная поверхность. Практически такие сложные поверхности даже не пытаются создать, а пользуются компромиссным решением. Мы не будем собирать все лучи в фокус, а соберем только лучи, достаточно близкие к оси 00'. Раз идеальная форма поверхности столь сложна, возьмем вместо нее сферическую поверхность, которая имеет нужную кривизну у самой оси, и пусть далекие лучи отклоняются от оси, если они того хотят. Сферу изготовить намного проще, чем другие поверхности, поэтому выберем сферу и рассмотрим поведение лучей, падающих на сферическую поверхность. Будем требовать точной фокусировки только для тех лучей, которые проходят вблизи от оси. Иногда эти лучи называют параксиальными, а наша задача — найти условия фокусировки параксиальных лучей. Позже мы обсудим ошибки, связанные с отклонением лучей от оси.

Итак, считая, что Р близко к оси, опустим перпендикуляр PQ длиной h. Если бы наша поверхность была плоскостью, проходящей через Р, то время, затрачиваемое на пути от О к Р, превышало бы время на пути от О к Q, а время на пути от Р к О' превышало бы время от Q к О'. Поверхность стекла должна быть кривой, потому что только в этом случае весь излишек времени компенсируется задержкой при прохождении пути от V к Q! Далее, излишек времени на пути ОР есть h

2/2s, а излишек времени на отрезке О'Р есть nh2/2s'. Это лишнее время, которое должно компенсироваться временем на пути VQ, накапливается на пути в среде, а не в вакууме. Другими словами, время на пути VQ в n раз больше соответствующего времени в вакууме, а поэтому лишнее время на этом отрезке есть (n-l)VQ. Ну, а какова длина VQ? Если С есть центр сферы с радиусом R, то с помощью уже знакомой нам формулы выводим, что длина VQ есть h2/2R. В результате мы получаем закон,

(27.2)

который связывает длины s и s' и определяет радиус кривизны R искомой поверхности:

(27.3)

Если мы хотим сфокусировать свет из точки О в точку О', то эта формула позволяет вычислить требуемый радиус кривизны поверхности.

Интересно, что та же линза с таким же радиусом кривизны R будет фокусировать и на других расстояниях, т. е. она является фокусирующей для любой пары расстояний, для которых сумма обратной величины одного расстояния и обратной величины другого, умноженного на n, есть постоянное число. Таким образом, данная линза (если учитывать только параксиальные лучи) является фокусирующей не только для точек О и О', но и для бесконечного числа пар точек, если эти пары удовлетворяют соотношению 1/s+n/s'=постоянная, характеризующая данную линзу.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука