Если Q задано, то легко получить закон спадания энергии колебаний: dW/dt=(-ω/Q)W, откуда следует W=W0
e-ωt/Q; здесь W0 — начальная энергия (при t=0).Чтобы найти Q для излучающего осциллятора, вернемся к формуле (32.8) и подставим вместо dW/dt выражение (32.6).
А что нужно взять в качестве энергии W осциллятора? Кинетическая энергия осциллятора равна 1/2mv2
, а средняя кинетическая энергия равна mω2x02/4. Но мы помним, что полная энергия осциллятора равна средней кинетической плюс средняя потенциальная, причем обе они для осциллятора равны; поэтому полная энергия равнаКакую частоту следует подставить в наши формулы? Мы возьмем собственную частоту ω0
, потому что практически это и есть частота излучения атома, а вместо m подставим me. После ряда сокращений эта формула приводится к виду(Для большей ясности и из соображений близости к исторически принятой форме мы ввели величину е2
=qe2/4πε0 и записали 2π/λ вместо ω0/с.) Поскольку величина Q безразмерна, множитель е2/mес2, зависящий только от массы и заряда электрона и выражающий его внутренние свойства, обязан иметь размерность длины. Он был назван классическим радиусом электрона, потому что в старых моделях электрона радиационное сопротивление пытались объяснить действием одной части электрона на другие его части, для чего размеры электрона приходилось выбирать порядка e2/mec2. Но эта величина потеряла свой прежний смысл, и никто теперь не считает, что электрон имеет такой радиус. Численное значение классического радиуса электрона следующее:Вычислим теперь значение
т. е. для атомов Q порядка 108
. Это значит, что атомный осциллятор колеблется 108Примерно за такое же время высвечиваются свободные атомы в обычных условиях. Проведенная оценка справедлива только для атомов в пустом пространстве, не подверженных никаким внешним воздействиям. Если электрон находится в твердом теле, он сталкивается с другими атомами и электронами, и тогда возникает добавочное сопротивление и затухание будет другим.
Величина эффективного сопротивления γ, определяющая сопротивление осциллятора, может быть найдена из соотношения 1/
§ 4. Независимые источники
Прежде чем перейти ко второй теме этой главы — рассеянию света, обсудим частный случай явления интерференции, который мы до сих пор не рассматривали. Речь пойдет о таком случае, когда интерференция не возникает. Пусть имеются два источника S1
и S2 с амплитудами поля A1 и A2. Излучение регистрируется в некоторой точке, в которую оба луча приходят с фазами φ1 и φ2 (фазы зависят от истинного момента излучения и времени запаздывания, являющегося функцией точки наблюдения).Наблюдаемая интенсивность излучения получается сложением двух комплексных векторов с модулями A1
и A2 и фазами φ1 и φ2 (как в гл. 30) и возведением в квадрат; таким образом, энергия пропорциональнаЕсли бы не было перекрестного члена 2A1
A2cos(φ1-φ2), полная энергия в данном направлении была бы равна сумме энергий A12+A22 излучаемых по отдельности каждым источником, что соответствует нашим обычным представлениям. Иначе говоря, интенсивность света, падающего на предмет от двух источников, совпала бы с суммой интенсивностей обоих источников. С другой стороны, если оставить перекрестный член, суммы интенсивностей не получится, потому что возникнет интерференция. В тех случаях, когда перекрестный член роли не играет, интерференция, казалось бы, отсутствует. Фактически же она возникает всегда, но подчас ее не удается наблюдать.Приведем несколько примеров. Пусть два источника находятся друг от друга на расстоянии 7 000 000 000 длин волн, что в общем вполне осуществимо. Тогда в некотором фиксированном направлении разность фаз принимает вполне определенное значение. Но если сдвинуться от этого направления хоть на волосок, скажем на несколько длин волн (совсем пустячное расстояние: зрачок нашего глаза настолько велик, что действие лучей можно усреднять на расстояниях, много больших длины волны), то разность фаз станет другой и значение косинуса резко изменится. При вычислении средней интенсивности в маленькой области пространства косинус в точках этой области будет все время колебаться — плюс, минус, плюс, минус — и при усреднении даст нуль.