Из первого поляроида выходит линейно поляризованный пучок света; мы пропускаем его через целлофан, а затем через другой поляроид, чтобы учесть действие целлофана на линейно поляризованный свет. Сначала расположим оси поляроидов перпендикулярно друг другу и уберем листок целлофана. Через второй поляроид свет не проходит совсем. Теперь поставим листок целлофана между поляроидами и будем поворачивать его вокруг оси пучка света. При этом, вообще говоря, некоторая часть света будет все время проходить через второй поляроид. Имеются, однако, две ориентации листка целлофана, перпендикулярные друг другу, при которых свет через второй поляроид не проходит. Ясно, что эти ориентации целлофана не влияют на линейную поляризацию проходящего через него света и должны поэтому совпадать с направлением оптической оси целлофана и перпендикулярным к нему направлением.
Здесь мы предполагаем, что скорость света, проходящего через целлофан, различна для указанных двух направлений поляризации, но само направление поляризации при прохождении света не меняется. Если выбрать промежуточную ориентацию целлофана где-то между двумя главными направлениями, как на фиг. 33.3, то через второй поляроид пройдет яркий пучок света.
Оказывается, толщина обычного целлофана, используемого в магазинах для упаковки, равна почти точно половине длины волны для большинства цветов в спектральном разложении белого света. Целлофан такой толщины поворачивает направление поляризации линейно поляризованного света на 90°, если это направление в падающем пучке образует угол 45° с оптической осью целлофана. Таким образом, выходящий из целлофана луч обладает как раз такой поляризацией, что может пройти второй поляроид.
Если в нашем опыте использовать пучок белого света, то только для одной компоненты его спектрального разложения толщина целлофана совпадет с половиной длины волны, и пучок, пропущенный вторым поляроидом, будет иметь цвет именно этой компоненты. Цвет пучка, прошедшего через наше устройство, будет зависеть от толщины листа целлофана, а эффективную толщину целлофана мы можем менять, наклоняя листок под некоторым углом и таким образом заставляя свет проходить больший путь внутри целлофана. При наклоне листка целлофана цвет пропущенного пучка меняется. Используя целлофан разной толщины, можно сконструировать фильтры, пропускающие лучи вполне определенного цвета. Эти фильтры обладают тем замечательным свойством, что они пропускают один цвет, когда оси двух поляроидов перпендикулярны, и дополнительный к нему цвет, когда оси поляроидов параллельны.
Системы ориентированных молекул имеют еще одно, на этот раз вполне практическое применение. Некоторые пластики состоят из очень длинных и сложных молекул, скрученных между собой. При очень тщательном проведении процесса затвердевания пластика молекулы, скручиваясь, образуют сплошную массу и ориентируются равномерно в самых разных направлениях, так что пластик обычно не проявляет свойства двойного лучепреломления. Но при затвердевании часто образуются дефекты и напряжения, которые приводят к некоторой неоднородности материала. Напряжения, возникающие в пластике, как бы вытягивают целую связку молекул, и молекулярные нити ориентируются преимущественно вдоль направления натяжения. Благодаря внутренним напряжениям пластик становится двоякопреломляющим, и эффект двойного лучепреломления можно наблюдать, пропуская через него поляризованный свет. Анализируя пропущенный пластиком пучок с помощью поляроида, мы заметим темные и светлые полосы (окрашенные в разные цвета, если берется пучок белого света). Если образец подвергнуть растяжению, вся совокупность полос начинает сдвигаться, а подсчитав полосы и определив место их наибольшего скопления, можно найти внутренние напряжения, возникающие в образце. Инженеры обычно используют это явление как способ определения напряжений в деталях, форма которых трудно поддается расчету.