Читаем Цифровая стеганография полностью

Шум обработки появляется в результате квантования коэффициентов трансформанты. Значение этого шума легко получить, скажем, для пары ДКП — JPEG, если известны таблицы квантования. Однако, например, в случае преобразования Адамара один коэффициент ДКП будет влиять на несколько коэффициентов Адамара. Хотелось бы иметь более общее определение шума обработки. Его можно рассматривать как уменьшение корреляции между коэффициентами трансформанты исходного изображения и квантованными коэффициентами. Например, при высоких степенях сжатия может возникнуть ситуация, когда будут отброшены целые субполосы. То есть дисперсия шума в этих субполосах, вообще говоря, бесконечна. Налицо уменьшение корреляции между коэффициентами субполосы до квантования и после. Конечно для получения приемлемых результатов необходимо усреднить значение шума обработки по многим изображениям.

Выбор значения визуального порога основывается на учете свойств СЧЗ. Известно, что шум в ВЧ областях изображения более приемлем, чем в НЧ областях. Можно ввести некоторые взвешивающие коэффициенты, , где и . Случаю α = 0 соответствует равномерное распределение стего по всем субполосам, случаю α = 1 соответствует распределение стего в соответствии с дисперсиями субполос. После некоторых упрощений можно получить выражение для пропускной способности: . Как видно из этого выражения, при α = 1 декомпозиция никак не будет влиять на пропускную способность стегоканала. При α < 1 это не так. Таким образом, пропускная способность возрастает за счет того, что в области с низкой дисперсией (высокочастотные) добавляется относительно больше энергии стегосигнала.

Рис. 5.11. Различные преобразования, упорядоченные по достигаемым выигрышам от кодирования


В работе [15] были произведены многочисленные эксперименты, которые позволили дать определенные рекомендации по выбору преобразования для стеганографии. Известно, что преобразования можно упорядочить по достигаемым выигрышам от кодирования (см. рис. 5.11). Под выигрышем от кодирования понимается степень перераспределения дисперсий коэффициентов преобразования.

Наибольший выигрыш дает преобразование Карунена-Лоэва (ПКЛ), наименьший — разложение по базису единичного импульса (то есть отсутствие преобразования). Преобразования, имеющие высокие значения выигрыша от кодирования, такие как ДКП, вейвлет-преобразование, характеризуются резко неравномерным распределением дисперсий коэффициентов субполос. Высокочастотные субполосы не подходят для вложения из-за большого шума обработки, а низкочастотные — из-за высокого шума изображения. Поэтому приходится ограничиваться среднечастотными полосами, в которых шум изображения примерно равен шуму обработки. Так как таких полос немного, то пропускная способность стегоканала невелика. В случае применения преобразования с более низким выигрышем от кодирования, например, Адамара или Фурье, имеется больше блоков, в которых шум изображения примерно равен шуму обработки. Следовательно, и пропускная способность выше. Неожиданный вывод: для повышения пропускной способности стеганографического канала лучше применять преобразования с меньшими выигрышами от кодирования, плохо подходящие для сжатия сигналов.

Эффективность применения вейвлет-преобразования и ДКП для сжатия изображений объясняется тем, что они хорошо моделируют процесс обработки изображения в СЧЗ, отделяют «значимые» детали от «незначимых». Значит, их более целесообразно применять в случае активного нарушителя. В самом деле, модификация значимых коэффициентов может привести к неприемлемому искажению изображения. При применении преобразования с низкими значениями выигрыша от кодирования существует опасность нарушения вложения, так как коэффициенты преобразования менее чувствительны к модификациям. Однако, существует большая гибкость в выборе преобразования. И если преобразование неизвестно нарушителю (хотя учет этого момента и противоречит принципу Керхгофа), то модификация стего будет затруднена.

5.3.2. Скрытие данных в коэффициентах дискретного косинусного преобразования

Впервые использование ДКП для скрытия информации было описано в работе [17]. При этом ДКП применялось ко всему изображению в целом.

Обычно же контейнер разбивается на блоки размером 8х8 пикселов. ДКП применяется к каждому блоку, в результате чего получаются матрицы коэффициентов ДКП, также размером 8х8. Коэффициенты будем обозначать через , где b — номер блока, (j,k) — позиция коэффициента внутри блока. Если блок сканируется в зигзагообразном порядке (как это имеет место в JPEG), то коэффициенты будем обозначать через cb,j. Коэффициент в левом верхнем углу обычно называется DC-коэффициентом. Он содержит информацию о яркости всего блока. Остальные коэффициенты называются АС-коэффициентами. Иногда выполняется ДКП всего изображения, а не отдельных блоков. Рассмотрим некоторые из предлагавшихся алгоритмов внедрения ЦВЗ в области ДКП.

Перейти на страницу:

Все книги серии Аспекты защиты

Похожие книги