- Как вы оцениваете другие рынки распознавания: распознавание речи, лиц, предметов на изображениях и так далее? Сейчас со всей этой шумихой вокруг дополненной реальности, возможно, был бы востребован такой сервис.
- Это интересные области, но мы в них усилия не вкладываем. Хоть вроде бы все они носят общее название, но подходы в них применяются совсем разные. Вот, например, систему распознавания текстов может написать и студент университета, руководствуясь теоретическими знаниями. Вопрос в том, кто создаст наиболее высокое качество этого решения: все бьются за последние проценты и даже доли процентов. У нас же есть другие интересные направления, связанные с анализом информации. Есть технология ABBYY Compreno, которая в том числе позволяет проводить семантический анализ текстов. Эти технологии в том числе позволят и более качественно решать задачи, например, распознавания речи. Хоть мы сами распознаванием речи не занимаемся, но предполагаем, что те компании, которые занимаются, будут активно обращаться к нам. Для распознавания речи очень важен контекст, он значительно облегчает задачу.
- То есть система, сделанная для перевода, поможет облегчить и распознавание?
- Да. Перевод был изначальной целью создания ABBYY Compreno, но чем дальше мы заходили, тем лучше видели, что можно получить эффекты и в других, смежных областях. Идея того, что текст на любом языке трансформировался в объекты на универсальном дереве смысловых понятий, привела нас к тому, что и поиск можно делать по смысловым понятиям, и сравнение документов, и, например, автоматическую расстановку тегов в документах. Когда у людей много электронных документов, сохраняемых на сервере, заставить каждого пользователя расставлять теги невозможно. Зато можно все документы пропускать через некоторый фильтр, который будет говорить, что этот документ на эту тему с такими-то ключевыми понятиями, автоматически расставляя теги.
- И от этого мы переходим к следующей и ещё более интересной вещи — поиску. Можно, выходит, сделать поисковик, который понимает, что написано на странице?
- Да, это одна из интересных задач. Сейчас что-то найти в интернете становится всё сложнее. Во-первых, приходится задавать вопрос не на человеческом языке, а упрощать его. Несколько месяцев назад у меня вышел из строя аккумулятор от мотоцикла. И я подумал: надо бы посмотреть, как его правильно заряжать в зимнее время. Начал искать, но находились только страницы о том, как купить новый аккумулятор, но не как заряжать его. Поисковые системы нового поколения будут искать, основываясь на семантическом индексе. С одной стороны, они из-за этого будут требовать больше ресурсов для своей работы: наша практика показывает, что семантический индекс в несколько раз превышает объёмы начального документа, ведь чтобы построить все взаимосвязи между понятиями, нужно много и вычислительных ресурсов, и места, чтобы хранить такой сложный индекс. С другой стороны, эти поисковики будут выдавать, во-первых, более релевантные результаты, а во-вторых, можно будет решать и более сложные задачи. К примеру, когда запрос сформулирован на одном языке, система всё равно поймёт, что за понятия в этом запросе, и сможет найти их в документах и на других языках, поддерживаемых системой. Если всё это будет сочетаться с переводом, то на запрос, построенный на одном языке, может быть получен релевантный ответ в виде документов на разных языках, автоматически переведённых на нужный.
- То есть можно сказать, что ABBYY — это потенциально следующий Google?
- Вряд ли мы будем как Google, мы не пишем свою поисковую систему. Мы, скорее всего, будем работать с кем-то, кто уже имеет поисковую инфраструктуру.
- Мне кажется, что я даже знаю, кто это может быть!