Читаем Творчество как точная наука полностью

Классифицировать задачи (не говоря уже о ситуациях) чрезвычайно трудно: суть задач скрыта за произвольным «словесным оформлением». Модели задач поддаются простой и четкой классификации. В основу этой классификации положена вепольная структура, исходной технической системы. Такой подход позволяет сразу разделить задачи на три типа: дан один элемент, даны два элемента, даны три (или более) элемента. Каждый тип делится на классы - в зависимости от того, какие именно элементы даны (вещества, поля), как они между собой связаны и можно ли их менять.

В приложении 2 приведена таблица основных классов моделей задач. Возьмем, например, задачу 23. В ее условии даны два элемента (тепловое поле и вещество), следовательно, задача относится ко второму типу. Поле и вещество связаны в задаче 23 двумя сопряженными действиями. если проволоку нагревать, она удлиняется. Одно действие полезно, другое вредно. Это задача класса 11.

Мы еще не раз обратимся к классификации моделей задач. Пока отметим только одно очень важное обстоятельство. Задачи первого типа (дан один элемент) почти всегда решаются достройкой веполя. Тут можно провести аналогию с химией. Галогены обладают разными свойствами, но есть некоторое общее свойство, довлеющее над всеми другими и обусловленное структурой внешней электронной оболочки атомов этих элементов: галогены стремятся получить недостающий электрон, достроить оболочку, сделать ее полной. Так обстоит дело и с моделями задач первого типа. Главное их свойство - стремление к достройке полного веполя. Задача 9 внешне мало похожа на задачу 6. Даже с вепольных позиций есть некоторая разница: в задаче 9 надо обнаруживать маленькие капельки жидкости, а в задаче 6 - менять свойства почвы (притом большого количества). Но обе задачи относятся к первому типу моделей (дан один элемент) и имеют сходные вепольные решения: для решения обеих задач надо ввести второе вещество и поле, управляющее первым веществом через второе.

Задачи третьего типа без особых затруднений переводятся в задачи первого и второго типа. Если, например, по условиям задачи дан веполь (т. е. три элемента), этот веполь можно рассматривать как один элемент (вещество) и соединять его по обычным правилам с другими веществами и полями.

Поэтому «классические» изобретательские задачи - это задачи второго типа. Для конфликта нужно столкновение двух противоборствующих тенденций, стремлений, свойств, требований. В сущности, такое столкновение есть и в задачах первого типа: второго элемента нет в условиях задачи, но он подразумевается. Скажем, в задаче 20 указан один элемент - крупинка алмаза. Второй элемент, который мог бы быть указан в условиях задачи - инструмент, обычно применяющийся в подобных случаях, например пинцет. Крупинки алмаза в данном случае слишком малы, нет смысла даже пытаться укладывать их пинцетом, поэтому второй элемент вынесен за пределы задачи.

ОСНОВНЫЕ МЕХАНИЗМЫ УСТРАНЕНИЯ ПРОТИВОРЕЧИЙ

В АРИЗ используются четыре механизма устранения технических противоречий:

1) переход от данной в модели задачи технической системы к идеальной системе путем формулирования идеального конечного результата (ИКР);

2) переход от ТП к ФП;

3) использование вепольных преобразований для устранения ФП;

4) применение системы операторов, в сконцентрированном виде отражающей информацию о наиболее эффективных способах преодоления ТП и ФП (списки типовых приемов, таблицы использования типовых приемов, таблицы и указатель применения физических эффектов).

В модели задачи описана техническая система (точнее, ее «больной» фрагмент) и присущее ей противоречие. Заранее неизвестно, как реально устранить это противоречие, но всегда есть возможность сформулировать идеальное решение, воображаемый конечный результат (ИКР). Смысл этой операции заключается в том, чтобы получить ориентир для перехода к сильным решениям. Идеальное решение, по самому определению, наиболее сильное из всех мыслимых и немыслимых решений (для данной модели задачи). Это как бы решение несуществующего шестого уровня. Тактика решения задачи с помощью ИКР состоит в том, чтобы «уцепиться» за этот единственный сверхсильный вариант и по возможности меньше от него отступать.

Перейти на страницу:

Похожие книги

Приспособиться и выжить!
Приспособиться и выжить!

В своей книге американский биолог, крупнейший специалист по эволюционной биологии развития (эво-дево) Шон Кэрролл понятно и увлекательно рассказывает о том, как эволюция и работа естественного отбора отражаются в летописи ДНК. По его собственным словам, он приводит такие доказательства дарвиновской теории, о которых сам Дарвин не мог и мечтать. Генетические исследования последних лет показывают, как у абсолютно разных видов развиваются одни и те же признаки, а у родственных — разные; каким образом эволюция повторяет сама себя; как белокровные рыбы научились обходиться без гемоглобина, а колобусы — переваривать растительную пищу как жвачные животные. Кэрролл решительно выступает против тех, кто использует ненаучные аргументы в борьбе с дарвинизмом, и предупреждает о том, что, если мы будем игнорировать прогнозы ученых и продолжим относиться к природе потребительски, планету ждет невеселое будущее.

Шон Б. Кэрролл , Шон Кэрролл

Научная литература / Биология / Научпоп / Образование и наука / Документальное
Что знает рыба
Что знает рыба

«Рыбы – не просто живые существа: это индивидуумы, обладающие личностью и строящие отношения с другими. Они могут учиться, воспринимать информацию и изобретать новое, успокаивать друг друга и строить планы на будущее. Они способны получать удовольствие, находиться в игривом настроении, ощущать страх, боль и радость. Это не просто умные, но и сознающие, общительные, социальные, способные использовать инструменты коммуникации, добродетельные и даже беспринципные существа. Цель моей книги – позволить им высказаться так, как было невозможно в прошлом. Благодаря значительным достижениям в области этологии, социобиологии, нейробиологии и экологии мы можем лучше понять, на что похож мир для самих рыб, как они воспринимают его, чувствуют и познают на собственном опыте». (Джонатан Бэлкомб)

Джонатан Бэлкомб

Научная литература