Читаем Убийственные большие данные. Как математика превратилась в оружие массового поражения полностью

Наше открытие было принято городскими чиновниками без всякого энтузиазма. Для встречи в мэрии наша группа подготовила презентацию, посвященную положению бездомных в Нью-Йорке. После того как мы продемонстрировали слайд со статистикой рецидива и эффективности «Секции 8», у нас состоялся чрезвычайно неловкий (и весьма недолгий) разговор. От нас потребовали удалить этот слайд. Линия партии осталась неизменной. Большие данные, которые при мудром с ними обращении могут помочь сделать важные открытия, снова продемонстрировали свою разрушительную силу. В конце концов, они направлены на поиски закономерностей, невидимых человеческому глазу. Сложная задача для специалистов по данным заключается в том, чтобы разобраться в экосистемах, которые создают эти данные, и выявить не только проблемы, но и их возможные решения. Простой анализ трудового процесса в компании может показать, что в штатном расписании есть пятеро явно лишних работников. Но если команда по анализу данных пригласит эксперта, тот разработает более конструктивную версию модели, которая не уволит этих людей, а предложит им работу в оптимизированной системе, а заодно определит, какая переподготовка им понадобится, чтобы занять эти рабочие места. Иногда работа специалиста по анализу данных заключается в том, чтобы знать, когда ты недостаточно знаешь.

Исследуя экономику данных, я вижу множество математических моделей, которые могут быть использованы для благих целей, и не меньше моделей с большим потенциалом стать таковым – если их не применять во вред. Возьмите для примера работу Миры Бернштейн, которая занимается трудовым рабством. Гарвардский доктор математики Бернштейн построила модель, которая сканирует масштабные производственные цепочки – например, сборку мобильных телефонов, изготовление кроссовок, автомобильный конвейер – и обнаруживает в них эпизоды принудительного труда. Бернштейн построила свою модель рабства для некоммерческой организации «Сделано в свободном мире» (Made in a Free World

). Цель этой организации – помочь компаниям избавиться от вклада рабского труда в своей продукции. Разумеется, речь о том, что компания и сама с энтузиазмом готова очистить себя от подобного пятна – не только потому, что она против рабства, но и потому, что это может замарать бренд.

Бернштейн собрала данные из нескольких источников – экономическая информация ООН, статистика по регионам с наивысшим процентом принудительного труда, детальная информация о компонентах тысяч промышленных товаров – и внесла все это в модель, оценивающую вероятность того, что определенный продукт из определенного региона может быть изготовлен с участием рабского труда. В интервью журналу Wired

Бернштейн рассказывала:

Идея заключается в том, что пользователь свяжется со своим поставщиком и скажет: «Расскажите мне подробнее о том, где вы раздобыли вот эти детали от ваших компьютеров?» Как и многие другие ответственные модели, детектор рабства не делает далеко идущих выводов. Он просто указывает на подозрительные места – а завершающую часть охоты должны провести люди.

Некоторые компании, несомненно, обнаружат, что казавшийся подозрительным поставщик действует в рамках закона (все модели таки или иначе производят ложноположительные результаты). Вся информация возвращается в организацию «Сделано в свободном мире», где Бернштейн изучает обратную связь.

Еще одна модель, нацеленная на общественное благо, появилась в сфере социальной помощи. Это предиктивная модель, которая указывает на семьи, где дети с наибольшей вероятностью могут подвергаться насилию. Модель, разработанная некоммерческой организацией Eckerd, занимающейся помощью детям и семьям, начала работу в 2013 году в округе Хиллсборо (пригород Тампы, штат Флорида). За предыдущие два года девять детей в этом районе погибли от насильственных действий – в том числе младенец, которого просто выбросили из окна автомобиля. Создатели модели включили в свою базу данных 1500 случаев насилия над детьми, в том числе со смертельным исходом. Они обнаружили некоторое количество маркеров, указывающий на высокий риск ненадлежащего обращения с детьми, включая наличие у матери сожителя, задокументированные в прошлом употребление наркотиков и случаи домашнего насилия, а также тот факт, что родитель в детстве находился в системе патронажного воспитания.

Перейти на страницу:

Все книги серии Цифровая экономика и цифровое будущее

Убийственные большие данные. Как математика превратилась в оружие массового поражения
Убийственные большие данные. Как математика превратилась в оружие массового поражения

Математические алгоритмы с каждым днем все сильнее подчиняют себе нашу жизнь. Более того: по мнению автора книги, профессора математики и финансового аналитика, эти алгоритмы уже превратились в опасное оружие в руках государства и корпораций – и это оружие нацелено в первую очередь на самые бедные и незащищенные слои населения. Новейшие математические приложения, с помощью которых банки и страховые компании отслеживают каждый наш шаг, претендуют на полную объективность, однако на самом деле в них заложены те же предрассудки и предубеждения, что свойственны их создателям – далеким от совершенства человеческим существам. При этом скрытые принципы работы математических моделей и их тайные критерии охраняются как величайшая коммерческая тайна, а их вердикты, подчас очевидно ошибочные и явно вредные, считаются окончательными и обжалованию не подлежат. Добро пожаловать в прекрасный новый мир – мир убийственных Больших данных!

Кэти О'Нил

Обществознание, социология

Похожие книги

Цивилизационные паттерны и исторические процессы
Цивилизационные паттерны и исторические процессы

Йохан Арнасон (р. 1940) – ведущий теоретик современной исторической социологии и один из основоположников цивилизационного анализа как социологической парадигмы. Находясь в продуктивном диалоге со Ш. Эйзенштадтом, разработавшим концепцию множественных модерностей, Арнасон развивает так называемый реляционный подход к исследованию цивилизаций. Одна из ключевых его особенностей – акцент на способности цивилизаций к взаимному обучению и заимствованию тех или иных культурных черт. При этом процесс развития цивилизации, по мнению автора, не всегда ограничен предсказуемым сценарием – его направление может изменяться под влиянием креативности социального действия и случайных событий. Характеризуя взаимоотношения различных цивилизаций с Западом, исследователь выделяет взаимодействие традиций, разнообразных путей модернизации и альтернативных форм модерности. Анализируя эволюцию российского общества, он показывает, как складывалась установка на «отрицание западной модерности с претензиями на то, чтобы превзойти ее». В представленный сборник работ Арнасона входят тексты, в которых он, с одной стороны, описывает основные положения своей теории, а с другой – демонстрирует возможности ее применения, в частности исследуя советскую модель. Эти труды значимы не только для осмысления исторических изменений в домодерных и модерных цивилизациях, но и для понимания социальных трансформаций в сегодняшнем мире.

Йохан Арнасон

Обществознание, социология
Управление мировоззрением. Подлинные и мнимые ценности русского народа
Управление мировоззрением. Подлинные и мнимые ценности русского народа

В своей новой книге автор, последовательно анализируя идеологию либерализма, приходит к выводу, что любые попытки построения в России современного, благополучного, процветающего общества на основе неолиберальных ценностей заведомо обречены на провал. Только категорический отказ от чуждой идеологии и возврат к основополагающим традиционным ценностям помогут русским людям вновь обрести потерянную ими в конце XX века веру в себя и выйти победителями из затянувшегося социально-экономического, идеологического, но, прежде всего, духовного кризиса.Книга предназначена для тех, кто не равнодушен к судьбе своего народа, кто хочет больше узнать об истории своего отечества и глубже понять те процессы, которые происходят в стране сегодня.

Виктор Белов

Обществознание, социология
СССР. Жизнь после смерти
СССР. Жизнь после смерти

Книга основана на материалах конференции «СССР: жизнь после смерти» и круглого стола «Второе крушение: от распада Советского Союза к кризису неолиберализма», состоявшихся в декабре 2011 г. и январе 2012 г. Дискуссия объединила экспертов и исследователей разных поколений: для одних «советское» является частью личного опыта, для других – историей. Насколько и в какой форме продолжается жизнь советских социально-культурных и бытовых практик в постсоветском, капиталистическом обществе? Является ли «советское наследие» препятствием для развития нового буржуазного общества в России или, наоборот, элементом, стабилизирующим новую систему? Оказывается ли «советское» фактором сопротивления или ресурсом адаптации к реальности неолиберального порядка? Ответы на эти вопросы, казавшиеся совершенно очевидными массовому сознанию начала 1990-х годов, явно должны быть найдены заново.

авторов Коллектив , Анна Ганжа , Гиляна Басангова , Евгений Александрович Добренко , Ирина Викторовна Глущенко

Культурология / История / Обществознание, социология / Политика / Образование и наука