Читаем Удивительная механика полностью

Оказалось, что и со сроком хранения энергии плоховато – держится накопленная энергия в электромагните, или, как говорят, в катушке индуктивности, доли секунды. Из-за сопротивления в проводнике – проволоке, намотанной на сердечник электромагнита, – вся накопленная в его магнитном поле энергия быстро переходит в тепло. А нельзя ли устранить это сопротивление?

Мне не хотелось идти в библиотеку, однако я пересилил себя. Зато потом в читальном зале я просидел до самого закрытия и нашел не только ответ на свой вопрос, но и множество других полезных сведений.

Еще в 1911 году голландский физик Хейке Камерлинг-Оннес обнаружил, что при охлаждении ртути до температуры, превышающей абсолютный нуль на 4,1 градуса, она полностью теряет свое электрическое сопротивление. Причем резко, скачком. Так же, как и ртуть, теряли сопротивление свинец, алюминий, олово, цинк и ряд других металлов. Явление это было названо сверхпроводимостью. В кольце из такого сверхпроводника ток мог «крутиться» сколько угодно, сохраняя энергию магнитного поля. Беда лишь в том, что даже при небольшом возрастании тока или внешних магнитных полей перечисленные металлы утрачивали свойство сверхпроводимости.

В течение полувека эти сверхпроводники, названные сверхпроводниками первого рода, практического применения не нашли. Но в 1961 году советские ученые предсказали возможность создания более совершенных сверхпроводников второго рода, а американские специалисты испытали такой сверхпроводник – проволоку из сплава ниобия с оловом, а затем ниобия с титаном. Через проволоку пропускали громадные токи, вокруг нее создавали гигантские магнитные поля, и ничего ей не делалось, свойство сверхпроводимости оставалось.

В кольце из сверхпроводника второго рода можно запасать и хранить без потерь очень большую энергию; в таком кольце ее примерно в семь раз больше, чем в равной по объему батарее конденсаторов.

Конечно, кольцо это держат не при комнатной температуре, его помещают в специальный термос для хранения холодных жидкостей – криостат. В криостат заливают жидкий гелий при температуре, близкой к абсолютному нулю. Чтобы жидкий гелий испарялся не слишком сильно, его окружают так называемым азотным экраном. Азотный экран – это слой жидкого азота поверх сосуда с жидким гелием. Испаряясь, жидкий азот уменьшает испарение более холодного и дорогого гелия.

Одна из первых моделей такого накопителя была испытана в 1970 году. В сверхпроводящем «электромагните» – соленоиде – была накоплена энергия в 10 кДж. Плотность энергии накопителя составляла около 40 кДж/кг.

До какого же предела можно «накачивать» энергию в сверхпроводящий магнит? Оказывается, этот предел диктует не что иное, как… механическая прочность.

Вот уж чего я не ожидал! Коварство сверхпроводящего кольца с током заключается в том, что магнитное поле, развиваемое им, воздействует прежде всего на само кольцо. Как в электромоторе магнитное поле, действуя на обмотки, вращает вал, так и в сверхпроводящем кольце магнитные силы пытаются разорвать его. А поскольку магнитные поля и токи здесь громадны, то силы, разрывающие кольцо, очень велики. Сплавы же ниобия, из которых изготовляют проволоку для кольца, увы, совсем непрочны. Куда им до стальных или синтетических материалов! Эта недостаточная механическая прочность и является досадной причиной, сдерживающей «накачку» сверхпроводника током, а значит, и получение энергии высокой плотности.

Ученые в своих проектах отдают предпочтение гигантским сверхпроводящим накопителям. И у них есть на то веские основания. Известно, что площадь поверхности какого-либо тела пропорциональна квадрату его размеров, а объем – кубу. С увеличением размеров увеличивается отношение объема к площади поверхности. Для сверхпроводящих накопителей это имеет немаловажное значение. От объема криостата зависит величина обмотки накопителя и, следовательно, количество запасаемой энергии, а от площади – интенсивность испарения содержащихся в нем жидких холодных газов – гелия, азота. Чем больше объем и меньше поверхность криостата, тем экономичнее накопитель.

Сверхпроводящий накопитель требует значительного числа вспомогательных устройств, обслуживающих его во время работы. Это и холодильные установки, и системы обеспечения энергией для управления, выпрямительные станции, преобразователи и многое, многое другое. Конечно, все это окупается лишь в очень крупном накопителе.

Японские ученые подсчитали, например, что сверхпроводящие накопители становятся выгодными лишь тогда, когда запас энергии в них превышает 1 млн МДж. Масса такого накопителя достигла бы десятков тысяч тонн. А пока самые крупные сверхпроводящие накопители в России способны запасать только сотни мегаджоулей, причем обмотки у них весят сотни тонн. Чуть больше подобные накопители за рубежом.

Какими же видятся ученым сверхпроводящие накопители будущего?

Перейти на страницу:

Все книги серии О чем умолчали учебники

Удивительная логика
Удивительная логика

Логику не изучают в школе. Тем не менее, мы пользуемся ее законами с детских лет: учимся размышлять и принимать решения, осмысливаем происходящее, постигаем разные науки и, самое главное, общаемся с другими людьми – поясняем свою позицию, возражаем, спорим, убеждаем…Современный умный, развитый человек просто обязан владеть логическим мышлением – оно упорядочивает полученные знания, придает ясность речи, делает убедительной аргументацию и позволяет добиваться победы в дискуссиях.Книга «Удивительная логика» требует определенного напряжения умственных сил и может служить своеобразной проверкой базовых логических способностей человека. В то же время она позволяет развить персональные интеллектуальные данные и творческие навыки поиска нестандартных решений. Одним словом, она учит мыслить.Тестовым и развивающим целям служат и приведенные в конце издания оригинальные логические задачи.Книга адресована в первую очередь старшеклассникам и студентам, интересующимся логикой и желающим активно использовать ее законы для достижения личного успеха.

Дмитрий Алексеевич Гусев

Научная литература / Философия / Прочая научная литература / Книги Для Детей / Образование и наука / Детская образовательная литература

Похожие книги

Об интеллекте
Об интеллекте

В книге "Об интеллекте" Джефф Хокинс представляет революционную теорию на стыке нейробиологии, психологии и кибернетики и описывающую систему "память-предсказание" как основу человеческого интеллекта. Автор отмечает, что все предшествующие попытки создания разумных машин провалились из-за фундаментальной ошибки разработчиков, стремившихся воссоздать человеческое поведение, но не учитывавших природу биологического разума. Джефф Хокинс предполагает, что идеи, сформулированные им в книге "Об интеллекте", лягут в основу создания истинного искусственного интеллекта - не копирующего, а превосходящего человеческий разум. Кроме этого книга содержит рассуждения о последствиях и возможностях создания разумных машин, взгляды автора на природу и отличительные особенности человеческого интеллекта.Книга рекомендуется всем, кого интересует устройство человеческого мозга и принципы его функционирования, а также тем, кто занимается проблемами разработки искусственного интеллекта.

Джефф Хокинс , Джеф Хокинс , Сандра Блейксли , Сандра Блэйксли

Зарубежная компьютерная, околокомпьютерная литература / Технические науки / Прочая компьютерная литература / Образование и наука / Книги по IT
Правила устройства электроустановок в вопросах и ответах. Пособие для изучения и подготовки к проверке знаний. Разделы 1, 6, 7
Правила устройства электроустановок в вопросах и ответах. Пособие для изучения и подготовки к проверке знаний. Разделы 1, 6, 7

Рассмотрены основные положения седьмого издания Правил устройства электроустановок (ПУЭ) в виде вопросов и ответов. ПУЭ седьмого издания в связи с длительным сроком переработки выпускаются и вводятся в действие отдельными разделами и главами по мере завершения работ но их пересмотру, согласованию и утверждению. В настоящее пособие включены следующие утвержденные Министерством энергетики РФ и действующие разделы и главы седьмого издания ПУЭ:Раздел 1. Общие правила. Главы 1.1–1.7; 1,9;Раздел 6. Электрическое освещение. Главы 6.1–6.6;Раздел 7. Электрооборудование специальных установок. Главы 7.1,7.2, 7.5–7.6, 7.10.(Главы 1.3–1.6 утверждены приказом Минэнерго России от 06.02.2004 г. № 34, но по состоянию на 15.03.2004 г. не введены в действие в связи с реорганизацией Министерства энергетики РФ).Пособие поможет специалистам в изучении Правил при приеме на работу и при подготовке к очередной проверке знаний.

Валентин Викторович Красник , Валентин Красник

Технические науки / Образование и наука