В целом можно сделать такой вывод: если орбита тела, обращающегося вокруг какой-либо планеты Солнечной системы либо вокруг Солнца, неустойчива, то возможны три варианта. В первом варианте тело будет выброшено либо из Солнечной системы, либо из области притяжения планеты, причем новая орбита, вероятнее всего, будет очень эксцентрической. Второй вариант: столкновение спутника с планетой. Математически это частный случай первого варианта, когда перед выбросом тело проходит столь близко от доминирующего центра тяготения, что «цепляет» поверхность планеты. Наконец, в третьем варианте тело переходит на резонансную орбиту, на которой может оставаться миллиарды лет.
Вопрос, какой из вариантов будет реализован на практике, это только вопрос времени и начальных условий. Множество спутников планет, астероидов и тел пояса Койпера уже находится на резонансных орбитах. Без сомнения, немало тел погибло или покинуло Солнечную систему. Однако у многих тел орбиты не резонансные, а у некоторых и неустойчивые. Как это понять?
Прежде всего, орбитальное движение может и не стать резонансным, если способствующие этому гравитационные силы весьма малы. Если же они достаточно велики для медленного дрейфа орбиты, то одно из двух: либо у тела еще все впереди, либо превращению орбиты тела в резонансную мешает некий посторонний фактор.
Что бы это могло быть? Действие фактора должно быть нерегулярным или вообще разовым, не то он превратится просто-напросто в еще одну силу, способствующую резонансному движению. Речь идет о вторжении во внутренние области Солнечной системы достаточно крупных тел со стороны.
В первую очередь это ледяные тела облака Оорта. Значительная часть их находится на резко эксцентрических орбитах, правда, перигелийные расстояния превышают несколько десятков астрономических единиц. Афелийные же расстояния могут достигать 100 тыс. а.е. Однако малейшее изменение скорости движения в афелии приведет к тому, что орбита изменится весьма сильно. В качестве факторов, способных придать телу облака Оорта некоторый «импульс», можно указать притяжение ближайших звезд и случайные тесные сближения этих тел друг с другом.
Мы знаем, что из облака Оорта к нам являются кометы с орбитами, близкими к параболическим. Но ледяные ядра комет сравнительно малы. Может ли пересечь, скажем, орбиту Юпитера тело размером с Плутон или хотя бы Квавар?
Не видно никаких причин, почему бы этого не могло быть в принципе. Тот факт, что за время существования наблюдательной астрономии таких явлений не отмечалось, не должен нас гипнотизировать: ведь четыре века с момента изобретения телескопа – сущий пустяк по астрономическим меркам. Конечно, пролет столь крупных тел вблизи планет (и искажения орбит их спутников) – явление наверняка чрезвычайно редкое, но «редко» не значит «никогда». Нельзя полностью исключить и такого сценария: на заре существования Солнечной системы одна или несколько газовых планет в результате взаимодействия с гравитационными полями Юпитера и Сатурна перешли на орбиту, характерную для долгопериодических комет. Период обращения такой планеты может составлять десятки и сотни тысяч, даже миллионы лет. Если в настоящий момент такое тело находится в десятках тысяч астрономических единиц от нас, то мы его, естественно, не видим. Без сомнения, юпитероподобная планета может быть зафиксирована с большого расстояния, но для этого надо знать, где ее искать. Обшаривать все небо в поисках планеты Икс, которой, возможно, и вовсе нет, никто не станет. У крупнейших наземных и космических телескопов и без того на редкость плотная программа.
Говоря о меньших «посторонних» телах, трудно обойти вниманием пресловутую планету Нибиру, разговоры о которой так сильно волнуют простаков. Вообще-то Нибиру упоминается в вавилонском сказании о сотворении мира «Энума элиш». Скорее всего, под Нибиру древние вавилоняне подразумевали Юпитер и считали эту планету обиталищем некоторых богов из их пантеона.