"Необоримый" нормальный импеданс приводит к тому, что в дело вмешивается косинусоидальная зависимость поглощения от угла падения звука: звуковая волна, приходящая к звукопоглотителю вблизи от перпендикуляра к его поверхности, лучше поглощается, чем волны, падающие под косыми углами.
Так ли уж необорим нормальный импеданс? Советский акустик К. А. Велижанина, посвятившая исследованию звукопоглотителей и процесса звукопоглощения, можно сказать, всю свою сознательную жизнь, приходит к заключению, что в ряде случаев угловые характеристики звукопоглощения могут быть достаточно причудливыми. К подобным же выводам пришли японские ученые, исследовавшие керамические поглотители, применяемые в конструкциях, работающих на открытом воздухе (например, в автотуннелях).
Еще немного физики, прежде чем перейти к практическому применению звукопоглотителей. Уже довольно давно было обнаружено при испытаниях участков звукопоглотителей в измерительных камерах интересное явление. Если определять поглощаемую энергию, по отношению к поверхности, звукопоглотителя, то коэффициент поглощения иногда оказывается больше единицы. Выходит, поглощаемая звуковая энергия больше энергии, падающей на поглотитель? Может быть, нарушается закон сохранения энергии? Нет, конечно, никакого нарушения закона не происходит. Просто вследствие явления дифракции наблюдается эффект, подобный описанному выше "эффекту замочной скважины". Кромки поглотителя, особенно близко расположенные к отражающим поверхностям камеры, "впитывают" звук, чем и обусловлено усиленное звукопоглощение исследуемого образца материала. Это явление было названо "кромочным эффектом".
Но вред от дифракции как источника измерительных ошибок гораздо меньше, чем положительная роль, которую может сыграть та же дифракция в залах, если на их стены и потолки нанесен звукопоглотитель. Участки звукопоглотителя, действуя по принципу замочной скважины, отсасывают на себя звук, отраженный от необлицованных участков ограждений помещения. Значит, вовсе не обязательно покрывать звукопоглотителем всю поверхность помещений! С точки зрения строительной практики это очень важный вывод.
Но вот мы уже подошли и к практическому применению звукопоглотителей. Еще Витрувием было подмечено, что в некоторых гулких залах речь оратора трудно разобрать, хотя громкость ее и достаточна. Здесь на помощь приходят звукопоглощающие облицовки.
Ассортимент их сейчас чрезвычайно разнообразен. Это и маты из минеральной "шерсти", пенополиуретана, и звукопоглощающие штукатурки, и древесностружечные плиты, и даже "штучные поглотители" (оставим это название на совести предложивших его, речь идет просто об отдельных локальных звукопоглотителях, подвешенных в каком-либо месте помещения). Благодаря работам Г. Л. Осипова, Е. Я. Юдина и многих других отечественных ученых и инженеров акустические свойства звукопоглощающих материалов изучены очень хорошо, и выпуск таких материалов в нашей стране налажен в достаточном количестве.
Непосвященный, возможно, счел бы ошибочным высказывание примерно такого рода: "Звукопоглощение в этом зале столько-то... квадратных метров". Однако ошибки нет: за единицу звукопоглощения (полного) принимается один квадратный метр открытого окна (предполагается, что звук, вышедший из комнаты в окно, обратно уже не возвращается, а это для данного помещения равноценно полному поглощению звука). Единица звукопоглощения носит еще название сэбин, по имени американского акустика, внесшего значительный вклад в теорию звукопоглощения в помещениях.
Чем больше общее звукопоглощение в помещении, тем быстрее спадает в нем звук после прекращения действия источника. Практически степень гулкости помещения оценивается временем стандартной реверберации, в течение которого происходит ослабление звуковой энергии в миллион раз. И вот оказывается, что для наилучшего восприятия речи нужно, чтобы время реверберации было в пределах 0,5--1 секунды. Накладываются определенные ограничения и на частотную зависимость времени реверберации.
Музыка требует примерно вдвое большего времени реверберации. При оценке общего звукопоглощения нельзя пренебречь и поглощением, вносимым людьми. Музыканты отчетливо различают разницу в звучании оркестра в зале с публикой и без нее. Поэтому при репетициях оркестров высокого класса в зале поверх стульев настилается ворсистый звукопоглощающий материал.
О количественной стороне поглощения звука людьми можно сказать, что звукопоглощение одного человека на средних звуковых частотах близко к поглощению половины квадратного метра открытого окна.