Читаем Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир полностью

Основное новшество в том, что, хотя эта система основана на числе 10, для него не зарезервировано никакого отдельного символа. Десять — это позиция цифр 1 и 0, их расположение, а не отдельный символ. То же самое справедливо для чисел 100 или 1000 и любых других, производных от 10. Их особый статус определяется не каким-либо символом, а местоположением составляющих их цифр. Такая система представления чисел называется позиционной системой счисления.

Здесь четко виден контраст между элегантной позиционной системой и более грубым подходом, используемым в римских цифрах. Вы хотите число десять? У нас есть 10. Это римское X. Аналогично получаем 100 (римское С) и 1000 (римское M). Также нетрудно получить десятичные представления для римских семей пятерок: римское V — число 5, римское L — число 50 и римское D — число 500.

В системе римских цифр возвышаются только несколько избранных чисел. Им дают собственную символику, а все остальные «второразрядные» числа представляются в виде их комбинаций.

К сожалению, римские цифры скрипели и стонали, когда сталкивались с чем-то большим, чем несколько тысяч. Чтобы обойти эту проблему, средневековые ученые (по-прежнему использовавшие римские цифры) для определения чисел, которые в тысячу раз больше имеющихся, прибегали к наложению на уже существующие числа новых символов — верхней черты. Например, означает десять тысяч, а — тысячу тысяч, или, другими словами, миллион. Умножение на миллиард (тысячу миллионов) встречалось редко, но если бы оно вам когда-нибудь понадобилось, вы всегда смогли бы наложить на еще одну черту. Похоже, веселье с римскими числами никогда не прекращается.

Индо-арабская (позиционная) система счисления позволяет легко и быстро написать любое число независимо от того, насколько оно велико. Причем представлено оно будет все теми же десятью цифрами, нужно просто поставить их в правильную позицию. Более того, обозначения в арабской десятичной системе счисления очень короткие. Например, любое число до одного миллиона можно отобразить шестью или меньшим количеством символов — цифр. Попробуйте сделать это словесно, с помощью черточек или римскими цифрами.

Проще всего обычным людям научиться вычислениям с помощью позиционной системы счисления. Для этого достаточно выучить две таблицы — умножения и ее копию для сложения. И это все, что вам когда-нибудь понадобится. Любые расчеты с любой парой чисел, независимо от того, насколько они большие, можно выполнять с применением этих таблиц.

Все вышесказанное звучит несколько механистически, но в этом есть определенный смысл, поскольку с помощью позиционной системы счисления можно запрограммировать вычислительную машину на выполнение любых арифметических действий. От первых механических калькуляторов до сегодняшних современных суперкомпьютеров автоматизация арифметических вычислений стала возможной благодаря красивой идее определения значения числового разряда путем его местоположения.

Однако до сих пор невоспетым героем истории остается цифра ноль. Без него все рухнет. Это символ-заполнитель, который позволяет нам отличать числа 1, 10 и 100 друг от друга.

Все позиционные системы счисления построены на некоем числе, называемом основание системы. Наша привычная система счисления десятичная (от латинского корня decem

, означающего «десять»), то есть основана на числе 10. В ней после первого разряда, представляющего единицы, следующие разряды представляют десятки, сотни, тысячи и т. д., каждый из которых является степенью 10:

10 = 101

100 = 10 x 10 = 102

1000 = 10 x 10 x 10 = 103.

Учитывая тот факт, что выбор числа 10 для системы счисления имеет анатомическую, а не логическую основу, естественным было бы спросить, а нет ли более эффективных систем счисления с другими основаниями? Веские аргументы можно представить в пользу системы счисления с основанием 2 — теперь уже повсеместно распространенной двоичной системы, используемой в компьютерах и всех электронных (цифровых) устройствах, начиная от мобильных телефонов и заканчивая видеокамерами. Из всех возможных систем счисления эта требует наименьшего количества символов (только два, 0 и 1). Это ее свойство прекрасно соотносится с логикой электронных переключателей или чего-то еще, что может находиться в двух состояниях: включено или выключено, открыто или закрыто.

Двоичная система нуждается в некотором пояснении. Вместо степеней 10 в ней используются степени 2. Две единицы по-прежнему занимают 1-й разряд, как и в десятичной системе, но следующие разряды теперь занимают двойки, четверки и восьмерки, потому что

2 = 21

4 = 2 x 2 = 22

8 = 2 x 2 x 2 = 23.

Конечно, при записи числа в двоичной системе счисления мы не используем цифру 2, так же как и «цифру» 10 при записи чисел в десятичной системе счисления. В двоичной системе 2 записывается как 10 (один и ноль), а это означает одну двойку и ноль единиц. Аналогично этому 4 можно записать как 100 (одна четверка, ноль двоек и ноль единиц), а 8 — как 1000.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература