Читаем Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир полностью

Линия, полученная в результате, полностью соответствует определению эллипса. Кнопки играют роль двух заданных точек. А сумма расстояний от них до любой точки на кривой всегда постоянна независимо от положения карандаша, потому что неизменно совпадает с длиной веревки.

Где же в этой конструкции фокусы эллипса? Там, где находятся кнопки. Я не буду это доказывать, но именно фокусы позволяют Люку и Дарту все время попадать в противника и загоняют шар в лузу при игре в бильярд на эллиптическом столе.

Вопрос: почему именно параболы и эллипсы имеют такую фантастическую способность фокусировать? Каким секретом они обладают?

Ответ: оба представляют собой поперечные сечения конуса.

Конус? Вы, возможно, не понимаете, причем тут он, но это именно то, что нам нужно. Просто до сих пор роль конуса была скрыта от нас.

Чтобы понять, причем здесь конус, представьте себе, как вы разрубаете его тесаком для разделки мяса, как если бы нарезали салями косо со все более увеличивающимся углом наклона ножа. Если конус разрезать горизонтально, то его сечением будет окружность.

Но если разрезать конус под небольшим наклоном, то его сечение из окружности превращается в эллипс.

Чем больше угол наклона сечения, тем длиннее и тоньше пропорции эллипса. И при критическом угле, равном углу наклона образующей конуса, эллипс превращается в параболу.

Так вот в чем секрет: парабола, в очень узком смысле, замаскировалась под эллипс. Неудивительно, что и она обладает чудесной способностью эллипса фокусировать. Это свойство по наследству передается из поколения в поколение от эллипсов к параболам.

На самом деле окружности, эллипсы и параболы — члены большой дружной семьи, известной под общим названием конические сечения — кривые, полученные путем разрезания поверхности конуса плоскостью. В семействе конических сечений есть еще одна сестра: если конус разрезается очень круто, под большим углом, чем угол наклона образующей конуса, то сечением станет кривая, называемая гиперболой

. В отличие от всех остальных кривых, эта состоит из двух ветвей.

Эти четыре типа кривых покажутся еще более тесно связанными, если посмотреть на них с точки зрения алгебры. В алгебре они представлены в виде графиков уравнений второй степени:

Ax2 + Bxy + Cy2 +

Dx + Ey + F = 0,

где константы A, B, C, … определяют, будет ли графиком данной функции окружность, эллипс, парабола или гипербола.

В расчетах эти кривые появляются при исследовании траекторий объектов, перемещающихся под воздействием силы тяжести. Поэтому совсем не случайно планеты солнечной системы движутся по эллиптическим орбитам с одним из фокусов в центре Солнца; кометы проходят через солнечную систему по эллиптической, параболической или гиперболической траектории; а брошенный ребенком мяч летит по параболической дуге. Все это подтверждает существование конического заговора.

Вспомните об этом, когда в следующий раз будете играть в мяч.

15. Непременное условие

Друг моего отца по имени Дэйв, выйдя на пенсию, поселился в городке Юпитер во Флориде. Когда мне было лет двенадцать, мы всей семьей гостили у него, и он показал нам то, что произвело на меня неизгладимое впечатление.

Дэйву нравилось составлять график времени наступления рассветов и закатов[70], которые он наблюдал в течение всего года. Каждый день он отмечал две точки на своем графике и после многих месяцев наблюдений заметил нечто любопытное. Эти две кривые выглядели как встречные волны. Когда одна из них поднималась, другая опускалась, а когда восход солнца наступал раньше, заходило оно позже.

Но были и исключения. В последние три недели июня, большей части декабря и в начале января время наступления восхода и захода каждый день было одинаково более поздним, что придавало волнам слегка однобокий вид.

Тем не менее закономерность в поведении кривых казалась очевидной: изменение промежутка между ними показывало увеличение или уменьшение продолжительности дня в различные времена года. Путем вычитания значений нижней кривой из значений верхней Дэйв также выяснил, как в течение года меняется продолжительность светового дня. К его удивлению, в этой кривой вообще не было однобокости. Она выглядела абсолютно симметричной.

Он увидел почти идеальную синусоиду. Если вы проходили тригонометрию[71] в средней школе, то, возможно, помните, что рассказывали о ней. Хотя не исключено, что ваш учитель больше говорил о синусоиде как об основном инструменте количественного выражения отношения между сторонами и углами треугольника. Это исходные тригонометрические определения древних астрономов и геодезистов.

Тем не менее тригонометрия, опровергая свое слишком скромное название, в настоящее время выходит далеко за рамки измерения треугольников. С помощью количественного описания круга она также проложила путь анализу всех повторяющихся с определенной частотой явлений — от океанских волн до волн головного мозга. Это ключ к математике циклов.

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии