Читаем Укрощение бесконечности. История математики от первых чисел до теории хаоса полностью

Исчисление неразрывно связано с функциями – действиями, когда берется некое исходное число и определяется другое, связанное с ним. Как правило, такое действие описывается формулой, где данному числу, обозначенному как x (возможно, с некими дополнительными условиями), вводится в соответствие число f(x). В качестве примеров можно привести функцию квадратного корня f(x) = √x (в этом случае x должно быть неотрицательным числом) и квадратную функцию f(x) = x2 (в этом случае для x нет никаких условий).

Первой ключевой идеей исчисления является дифференцирование, т. е. взятие производной функции. Производная – это скорость изменения функции f(

x), сравниваемая с изменением x, т. е. скорость изменения f(x) относительно x.

Геометрически скорость изменения – это тангенс угла наклона графика f в точке х. К нему можно приблизиться, определив угол наклона секущей – линии, пересекающей график в двух наиболее близких точках, соответствующих x, и x + h, где h невелико. Угол наклона секущей равен:



Теперь предположим, что h – очень малая величина. Тогда секущая приблизится к касательной на графике в точке x. Так что в определенном смысле необходимый угол наклона – производная f

в точке x – будет пределом для этого выражения, поскольку h становится сколько угодно малым.

Попробуем произвести это вычисление для простого примера, f(x) = x2. Получаем:



А поскольку h становится всё меньше, угол наклона 2x + h всё ближе к 2x. Производная f – это функция g, равная g(

x) = 2x.

Здесь главный концептуальный вопрос в том, что мы подразумеваем под пределом. У математиков ушел почти век на то, чтобы дать ему логичное определение.

Другой ветвью исчисления стало интегральное. Этот процесс проще всего представить как обратный дифференцированию. Интеграл g, описанный формулой



является любой функцией f(x), производная которой – g(x). Например, поскольку производная f(x) = x2 есть g(x

) = 2x, интеграл от g(x) = 2x равен f(x) = x2.


Необходимость в исчислении

Толчок к изобретению исчисления дали два направления. В области чистой математики дифференциальное исчисление эволюционировало из методов поиска касательной к кривой, а интегральное исчисление – из методов расчета площадей плоских фигур и объемов тел. Но главный стимул для исчисления пришел от физиков – в связи с укреплявшимся убеждением в том, что природа имеет свои законы. По причинам, до сих пор не полностью нам понятным, большинство фундаментальных законов природы включают в себя переменные. А значит, их можно исследовать и понять только с помощью исчисления.

В эпохи, предшествовавшие Возрождению, самую точную модель движения Солнца, Луны и планет удалось создать Птолемею. В его системе Земля оставалась неподвижной, а все остальные тела – в частности, Солнце – вращались вокруг по некоему набору (реальных или воображаемых – на усмотрение рассуждающего) окружностей. Последние преобразовались в сферы в работах древнегреческого астронома Гиппарха. Его сферы вращались вокруг гигантских осей, часть из которых были связаны с другими сферами и двигались по ним. Этот вид взаимосвязей казался необходимым для моделей планетарных орбит. Причем некоторые планеты, такие как Венера, Меркурий и Марс, на первый взгляд имели сложные орбиты, включавшие петли. Другие – Юпитер и Сатурн (остальные планеты тогда еще не были открыты) – вели себя более прилично, но даже они временами выкидывали странные штуки, известные еще древним вавилонянам.

Мы уже обсуждали систему Птолемея, известную как эпициклы, где окружности заменяли сферы, но сохранялась единая схема движения. Модель Гиппарха не была достаточно точной по сравнению с фактическими наблюдениями, а модель Птолемея отлично отражала все данные астрономов. Это сделало ее единственно «верной» на тысячу лет. Его труды, переведенные на арабский язык в «Альмагесте», служили астрономам многих культур.

Вера против науки

Но даже «Альмагест» не отражал всех передвижений планет. Вдобавок он был довольно сложен. Примерно в 1000 г. н. э. некоторые арабские и европейские мыслители стали задаваться вопросом, не следует ли объяснить дневное движение Солнца вращением Земли, а кое-кто даже пошел дальше и предположил, что Земля сама вращается вокруг Солнца. Но в то время эти идеи так и остались домыслами.

В эпоху Возрождения научный подход к описанию мира всё больше укоренялся среди передовых мыслителей, и во многом причиной тому были сами религиозные догмы. В то время католическая церковь безраздельно владела умами приверженцев и диктовала им свой взгляд на устройство Вселенной. И дело было не только в том, что христианскому богу приписывалось как само ее сотворение, так и всё, что происходило в ней каждый день. Церковь считала, что единственно верное толкование законов природы можно искать только в Библии, в буквальном смысле. Земля должна была считаться центром всего, непоколебимой основой, вокруг которой вращаются небеса. А человек, как вершина творения, провозглашался причиной создания остальной Вселенной.

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Кто сказал что НФ умерла? Нет, она затаилась — на время. Взаимодействие личности и искусственного интеллекта, воскрешение из мёртвых и чудовищные биологические мутации, апокалиптика и постапокалиптика, жёсткий киберпанк и параллельные Вселенные, головокружительные приключения и неспешные рассуждения о судьбах личности и социума — всему есть место на страницах «Бозона Хиггса». Равно как и полному возрастному спектру авторов: от патриарха отечественной НФ Евгения Войскунского до юной дебютантки Натальи Лесковой.НФ — жива! Но это уже совсем другая НФ.

Антон Первушин , Евгений Войскунский , Игорь Минаков , Павел Амнуэль , Ярослав Веров

Фантастика / Научная Фантастика / Фантастика: прочее / Словари и Энциклопедии / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература