Для нахождения моделей в поведении колеса рулетки сначала выдвигается предположение, что результаты вращения колеса будут чисто случайными, а затем фактическое поведение сравнивается с этим эталоном. Точно так же в примере с бросанием монеты мы можем ожидать некоторое процентное различие между ожидаемыми и наблюдаемыми результатами. Выдвижение гипотезы о том, что изменения курсов акций происходят случайно, позволяет изучить их на отклонения от случайного поведения. Затем с помощью методов статистического анализа любые несоответствия могут быть классифицированы либо как
Этот подход позволяет исследователю изолировать любые предсказуемые модели, которые могли бы быть полезны для инвестиционных стратегий.
Вооружившись пониманием статистической независимости, ожидаемых значений и отклонения, теперь можно вернуться к вопросу, в котором мы должны были отобрать реальную последовательность бросания монеты от двух искусственных последовательностей. Были такие варианты:
a. ООООРР.
b. ОРОРРО.
c. РРРРРР.
Когда людей просят отличить реальную последовательность от двух искусственных последовательностей, легко побеждает последовательность «Ь» – ОРОРРО. По правде говоря, однако, выпадение каждой последовательность столь же вероятно, сколь и выпадение любой другой последовательности. Шесть последовательных бросков приведут к одной из 64
Популярный же ответ имеет отношение к бихевиористской экономике – восприятию людьми того, как должны выглядеть реальные последовательности подбрасывания монеты – и абсолютно никакого отношения к статистической вероятности.
Закон малых чисел
После изучения вероятностей, связанных с определенными последовательностями подбрасываний монеты, стоит рассмотреть несколько особенно важных вопросов о вероятности определенных сгруппированных результатов.
Рассмотрим пример. Петр и Дарья играли в бросание монеты каждый день в течение 1 000 последовательных дней, охватывающих большую часть трех прошедших лет. Пётр всегда ставил на орла; Дарья всегда ставила на решку. Их монета была симметричной, и у Пётра, и у Дарьи были одинаковые шансы на победу.
Пётр был впереди в любой взятый день, если число орлов превышало число решек. Дарья была впереди в любой взятый день, если число решек превышало число орлов. Что из нижеперечисленного является наиболее вероятным описанием их игры?
a. Со временем лидерство между Пётром и Дарьей менялось часто, поскольку проценты их выигрышей постоянно колебались между 48 и 52 процентами.
b. Один из игроков быстро вышел вперед – и остался впереди – в более чем 96 процентах бросков.
Как обсуждалось ранее, при любом броске симметричной монеты вероятность выпадения орла против решки равна точно 5050. Ясно, что чем больше бросков, тем больше уменьшается процентное отклонение от ожидаемого.
А вот еще вопрос. Вы и ваш друг бросаете монету один раз в день. Вы всегда ставите на орла; ваш друг всегда ставит на решку. На выигрыш какого числа бросков подряд вы и ваш друг имеете шанс вероятнее всего приблизительно через два месяца?
a. Одного.
b. Двух.
c. Трех.
d. Четырех.
e. Пяти.
Правильный ответ на этот вопрос – «е» – после 60 подбрасываний монеты, каждый из двух игроков имеет шанс вероятнее всего на выигрыш пяти бросков подряд.
Александр Юрьевич Ильин , А. Ю. Ильин , В. А. Яговкина , Денис Александрович Шевчук , И. Г. Ленева , Маргарита Николаевна Кобзарь-Фролова , М. Н. Кобзарь-Фролова , Н. В. Матыцина , Станислав Федорович Мазурин
Экономика / Юриспруденция / Учебники и пособия для среднего и специального образования / Образование и наука / Финансы и бизнес