Распределение Ферми — Дирака: вариация ni
, от коэффициента i/. Форма распределения Ферми меняется в зависимости от произведения kBТ. При низких температурах распределение Ферми — Дирака приближается к ступенчатой функции или к единичной функции Хевисайда, кусочнопостоянной математической функции, значение которой (0 или 1) зависит от того, положительное или отрицательное х.Все известные на данный момент частицы, согласно принципу исключения Паули, делятся на фермионы и бозоны. Они приведены в таблице на этой странице, а на следующей — указано, когда была выдвинута гипотеза об их существовании и когда они были открыты экспериментально.
Два фермиона не могут оставаться в одинаковом квантовом состоянии, то есть иметь одинаковые квантовые числа. Как видно из таблицы, фермионы имеют спин Vi и антисимметричную волновую функцию. Кроме того, согласно принципу исключения Паули, два электрона могут находиться на одном и том же атомном уровне (быть спаренными), только если значения их спинов противоположны друг другу, то есть если они различаются хотя бы спиновым числом.
Все фермионы подчиняются статистике Ферми — Дирака и делятся на две большие группы: кварки — частицы атомного ядра (протоны и нейтроны), участвующие в сильном ядерном взаимодействии, и лептоны, среди которых электроны и нейтрино с электрослабым взаимодействием. Бозоны, находящиеся в симметричных квантовых состояниях и обладающие целым спином, не подчиняются принципу Паули, то есть в одном квантовом состоянии может быть более одного бозона. По этой причине возможен, например, эффект лазера, когда множество фотонов переходит с одного энергетического уровня на другой с таким же квантовым числом. Бозоны следуют статистике Бозе — Эйнштейна и являются носителями сил, с помощью которых частицы взаимодействуют друг с другом.
Все частицы материи были названы фермионами в честь Энрико Ферми, который первым понял статистические принципы функционирования квантовой Вселенной.
Частица | Гипотеза | Открытие |
u-кварк | Гелл-Манн и Цвейг (1964) | Лаборатория SLAC (1967) |
d-кварк | Гелл-Манн и Цвейг (1964) | Лаборатория SLAC (1967) |
с-кварк | Глэшоу, Илиопулос, Майяни (1970) | Рихтер и другие сотрудники лаборатории SLAC и Тинг и сотрудники лаборатории BNL (1974) |
s-кварк | Гелл-Манн и Цвейг (1964) | Лаборатория SLAC (1967) |
t-кварк | Кобаяси и Масукава (1973) | Коллаборации CDF и DO Фермилаб (1995) |
b-кварк | Кобаяси и Масукава (1973) | Ледерман и сотрудники лаборатории Фермилаб (1977) |
Электронное нейтрино | Паули (1930) | Коуэн и Райнес (1956) |
Электрон | Ламинг (1838) / Стони (1874) | Томсон (1897) |
Мюонное нейтрино | Саката и Иноуэ (1946) | Ледерман, Шварц и Стейнбергер (1962) |
Мюон | — | Андерсон и Неддермейер (1936) |
Тау-нейтрино | Перл и сотрудники лаборатории SLAC (1974) | Коллаборация DONUT / Лаборатория Фермилаб (2000) |
Тау-лептон | — | Перл и сотрудники лаборатории SLAC (1974) |
Фотон | Планк (1900) / Эйнштейн (1905) | Рентген / Иван Пулюй (1896) |
Глюон | Гелл-Манн (1962) | Исследовательский центр DESY / детектор PLUTO (1978) |
Слабое взаимодействие Z° | Глэшоу. Вайнберг, Салам (1968) | Детекторы UA1 / UA2 (1983) |
Слабое взаимодействие W+/- | Глэшоу, Вайнберг, Салам (1968) | Детекторы UA1 / UA2 (1983) |
Бозон Хиггса | Хиггс (1964) | ЦЕРН-БАК (Большой адронный коллайдер) (2012) |
ГЛАВА 3
Нейтрино и бета-распад
Благодаря открытию нейтрона, искусственной радиации и делению ядра немногим больше чем за десятилетие, между 1927 и 1938 годами, ученым удалось проникнуть в тайны атомного мира. Модель Томаса — Ферми позволила понять феномен электрической проводимости и заложила основы современной электроники. Ферми получил Нобелевскую премию за доказательство возможности получения новых радиоактивных элементов и дал название новой частице — нейтрино. Сегодня идут споры о том, могут ли нейтрино развивать скорость, превышающую скорость света.