Первым квантовым шеф-поваром стал Дирак. Как мы помним, он был первым человеком за пределами Геттингена, кто понял новую матричную механику и развил ее дальше. Точно так же он взял волновую механику Шрёдингера и, развивая ее, дал ей более основательный фундамент. Адаптируя уравнения к требованиям теории относительности и добавляя в качестве четвертого измерения время, в 1928 году Дирак столкнулся с необходимостью ввести новое понятие, которым теперь является спин электрона, и оно неожиданно дало объяснение расщеплению спектральных линий на дублеты, которое мучило теоретиков в течение десяти лет. Одновременно с этим появилось другое неожиданное следствие, открывшее путь для развития современной физики элементарных частиц.
Антиматерия
В соответствии с уравнениями Эйнштейна частица с массой т
и импульсом р обладает энергией, определяющейся следующим равенством:Е2
= m2рл + р2с2,которое сокращается до знаменитого Е = тс2
, когда импульс равен нулю. Но это еще далеко не все. Поскольку известное уравнение получается, когда берется квадратный корень от его полной формы, в математике необходимо сказать, что Е может быть либо положительной, либо отрицательной. Как известно, 2 × 2 = 4 и -2 × -2 = 4, поэтому, строго говоря, Е = ±mc2. Когда в уравнения проникают такие «отрицательные корни», их, как правило, можно отбросить как не имеющие значения, ведь «очевидно», что нам нужен только положительный корень. Будучи гением, Дирак не предпринял этот очевидный шаг, а озадачился следствиями. Когда в релятивистской версии квантовой механики происходит расчет энергетических уровней, появляются два их набора: один положительный, соответствующий mс2, а другой – отрицательный, соответствующий – mс2. В соответствии с теорией электроны должны падать на самый низкий из свободных энергетических уровней, но при этом даже самый высокий отрицательный энергетический уровень расположен ниже, чем самый низкий положительный энергетический уровень. Так что такое отрицательные энергетические уровни? Почему все электроны во Вселенной не падают на них и не исчезают?Ответ Дирака основывался на том, что электроны являются фермионами и только один электрон может занять одно возможное электрическое состояние (два на энергетический уровень, один с каждым значением спина). Должно быть, заключил он, электроны не падают на отрицательные энергетические уровни, поскольку все эти уровни уже заполнены. То, что мы называем «пустым пространством», на самом деле является морем электронов с отрицательной энергией! На этом он не остановился. Дайте электрону энергию, и он поскачет вверх по лестнице энергетических состояний. Поэтому, если дать достаточное количество энергии одному из электронов в отрицательном энергетическом море, он должен перепрыгнуть в реальный мир и стать видимым, как обычный электрон. Чтобы перейти из состояния – mс2
в состояние +mс2, явно необходима энергия, равная 2mс2, которая для массы электрона равняется примерно 1 МэВ и довольно просто может появляться в атомных процессах, когда частицы сталкиваются друг с другом. Электрон с отрицательной энергией, перепрыгнувший в реальный мир, будет обычным во всех отношениях, за исключением того, что он оставит после себя дырку в море отрицательной энергии, став отсутствующим электроном с отрицательным зарядом. Эта дырка, по словам Дирака, должна вести себя, как положительно заряженная частица (подобно тому, как двойное отрицание рождает утверждение, отсутствие отрицательно заряженной частицы в отрицательном море должно проявлять себя в качестве положительного заряда). Когда Дирак впервые задумался об этом, он решил, что по закону симметрии эта положительно заряженная частица должна обладать той же массой, что и электрон. Но в минуту слабости, когда он опубликовал свою работу, Дирак предположил, что положительно заряженная частица могла быть протоном – единственной частицей, помимо электрона, которая была известна в конце 1920-х годов. Как он написал в «Путях физики», это было ошибкой и ему следовало, набравшись смелости, предсказать, что эксперименты выявят прежде неизвестную частицу, обладающую массой, равной массе электрона, но положительным зарядом при этом.