4. Проблемы, идеи, гипотезы.
Космологические исследования используют всё богатство современной физики, причем общие физические законы, надежно установленные и проверенные в лабораторном эксперименте, применимы к изучению эволюции Вселенной, начиная по крайней мере с эпохи термоядерных реакций, с первых секунд существования мира. Комбинация большого числа наблюдений с надежной физической теорией позволила к настоящему времени сделать обоснованные выводы о ряде ключевых физических свойств наблюдаемой Вселенной. Выше мы рассказали о главных из них, а теперь обратимся ктекущим проблемам, идеям и гипотезам в космологии (более подробное изложение читатель может найти в нашей книге [5]).4.1. Очень ранняя Вселенная.
Естественно спросить: а что происходило во Вселенной до эпохи термоядерных реакций? С определенной степенью уверенности можно утверждать, что космологическое расширение имело место и в более ранние времена, когда возраст мира был и много меньше одной секунды. Но суждения о самых ранних стадиях космологического расширения становятся тем менее надежными, чем глубже в прошлое они обращены. Наблюдения тут уже невозможны; более того, стремясь мысленно приблизиться к самому началу мира, когда речь идет уже о немыслимо высоких плотностях и температурах, мы выходим за рамки применимости общих законов физики — они установлены при других, гораздо более скромных значениях физических параметров. Чтобы хоть что-то сказать о тех временах, приходится по необходимости прибегать к далекой экстраполяции стандартных законов в область, где для их применимости не существует, вообще говоря, никаких объективных оснований. И тем не менее широкое распространение в последние 20–25 лет получили теории очень ранней Вселенной, которые оперируют колоссальными плотностями, исключительно малыми промежутками времени и пространственными интервалами — очень далеко за пределами применимости стандартной физики.Такова, например, теория инфляции, у которой имеется много сторонников. В её основе лежит смелая гипотеза о причине космологического расширения, выдвинутая сорок лет назад Э.Б. Глинером, работавшим тогда в Петербургском (Ленинградском) Физтехе. Согласно его идее, исходный разгон вещества создало антитяготение первичного космического вакуума. При этом предполагается, что и само космическое вещество могло рождаться из гипотетического первичного вакуума. Многочисленные попытки развивать эту идею привели к сотням различных теоретических моделей, нередко весьма изобретательных.
Самый интересный результат в этой области — теория происхождения сгущений и разрежений в космическом веществе, — тех самых отклонений от однородности, которые дали начало галактикам и их скоплениям и оставили отпечатки в реликтовом фоне (см. выше). Эту теорию построили В.А. Муханов, Г.В. Чибисов (ФИАН), А.А. Старобинский (ИТФ РАН). Они показали, что такие неоднородности могли бы возникнуть благодаря квантовым флуктуациям первичного вакуума. На этом пути не удается до сих пор найти амплитуду неоднородностей, но их спектр (т. е. зависимость амплитуды от масштаба возмущений) получается правильным — он согласуется с наблюдениями реликтового фона.
4.2. Бариогенез.
Теория ранней Вселенной тесно связана с физикой элементарных частиц (эта тема подробно обсуждается в новой книге [8]). Один из ключевых вопросов на стыке космологии и микрофизики — барионная асимметрия Вселенной. Тела природы, от нашей планеты Земля (и всего, что на ней) и до самых далеких звезд, сделаны из «обычных» частиц — протонов, нейтронов и электронов. Между тем, согласно одному из основных принципов микрофизики, в природе имеет место симметрия — равноправие — между частицами и античастицами. Где же те античастицы — антипротоны, антинейтроны, позитроны, — которые в силу этой симметрии должны присутствовать в мире в тех же количествах, что и обычные частицы? Физики хорошо знают античастицы: их получают на ускорителях и наблюдают в космических лучах. Но их число ничтожно по сравнению с числом частиц. Какова причина этого перекоса в природе?Возможный ответ на этот вопрос был предложен А.Д. Сахаровым и В.А. Кузьминым в 1960-1970-е гг. Идея состоит в том, что симметрия между частицами и античастицами является в действительности не строгой, а слегка нарушенной. Было показано, что даже очень слабой асимметрии такого рода может быть достаточно, чтобы в экстремальных физических условиях, существовавших в ранней Вселенной, возникла сильная асимметрия, которая имеет место сейчас. Процесс, в результате которого это произошло, называют космологическим бариогенезом.