Читаем Вечность. В поисках окончательной теории времени полностью

На самом деле здесь нет никакого замалчивания важнейшей роли космологии, никаких тайных заговоров и никакого противоречия. Студентов, изучающих статистическую механику, в основном интересуют эксперименты, воспроизводимые в лабораториях или на кухнях здесь, на Земле. Проводя эксперимент, мы сами контролируем его условия; в частности, мы можем понизить энтропию изучаемых систем и посмотреть, что произойдет. Для того чтобы понять, как это работает, не нужно знать ничего о космологии и огромной Вселенной вокруг нас.

Однако наши цели куда грандиознее. Стрела времени – это намного больше, чем просто один из элементов каких-то конкретных лабораторных опытов; это неотъемлемая составляющая нашего мира. Традиционная статистическая механика успешно объясняет, почему яйцо легко превратить в яичницу, но яичницу превратить обратно в яйцо практически невозможно. Что она не в состоянии объяснить, так это почему, открывая холодильник, мы, в принципе, можем там обнаружить яйцо. Почему мы окружены идеально упорядоченными, законченными объектами, такими как яйца, и пианино, и научные книги, а не бесформенным хаосом?

Часть ответа на этот вопрос очевидна: объекты, окружающие нас в повседневной жизни, не относятся к замкнутым системам. Очевидно, что яйцо – это не случайная конфигурация атомов, а тщательно сконструированная система, для построения которой требуется определенный набор ресурсов и доступная энергия, не говоря уж о курице. Однако мы могли бы задать аналогичный вопрос относительно Солнечной системы или галактики Млечный Путь. В каждом из этих случаев мы имеем дело с изолированными – с практической точки зрения – системами, энтропия которых тем не менее очень низка – намного ниже, чем могла бы быть.

Ответ, как известно, заключается в том, что Солнечная система не всегда была замкнутой системой; она появилась из межзвездного облака с более низкой, чем у нее, энтропией. А это облако сформировалось в существовавшей ранее галактике, энтропия которой была еще ниже. А эта галактика сформировалась из изначальной плазмы с еще более низкой энтропией. А эта плазма была порождена самой ранней Вселенной, у которой энтропия была самой низкой.

Ранняя Вселенная появилась в результате Большого взрыва. В действительности нам не очень много известно о ранней Вселенной – почему у нее была именно такая конфигурация, а не какая-то другая; это одна из загадок, с которыми мы пытаемся разобраться в этой книге. Однако именно чрезвычайно низкая энтропия ранней Вселенной лежит в корне окончательного объяснения стрелы времени в том виде, в каком она проявляет себя на наших кухнях, в лабораториях и воспоминаниях.

В обычных учебниках по статистической механике вы не найдете обсуждения этой увлекательной истории. Их авторы исходят из предположения, что нас интересуют системы, у которых в исходном состоянии относительно низкая энтропия, и начинают рассуждения с этой точки. Однако нам нужно больше: мы хотим знать, почему на одном конце времени у нашей Вселенной была такая низкая энтропия, породившая и задавшая направление стреле времени. Полагаю, для начала имеет смысл вспомнить, что нам известно о Вселенной в целом и как она развивалась от момента зарождения и до сегодняшнего дня.

Видимая Вселенная

Наша Вселенная расширяется, и она наполнена галактиками, постепенно отдаляющимися друг от друга. Мы напрямую взаимодействуем лишь с небольшой частью Вселенной и в попытке осознать общую картину неизбежно прибегаем к помощи аналогий. Мы сравниваем Вселенную с поверхностью воздушного шарика, на которой нарисованы маленькие точки, представляющие отдельные галактики. Или же мы говорим, что Вселенная похожа на поднимающийся в духовке кекс с изюмом, в котором галактики – это изюминки.

Все эти аналогии просто ужасны. И не только потому, что как-то унизительно сравнивать нечто настолько величественное, как галактика, с крошечной сморщенной изюминкой. Настоящая проблема заключается в том, что любая подобная аналогия вызывает ассоциации, не применимые к реальной Вселенной. У воздушного шарика, например, есть внутренняя и внешняя поверхности, а также большое пространство снаружи, в которое он, собственно, и расширяется; у Вселенной ничего этого нет. У кекса есть края, а сам он находится внутри духовки и вкусно пахнет; для Вселенной вы не найдете аналогичных понятий.

Поэтому давайте попробуем зайти с другой стороны. Для того чтобы понять Вселенную вокруг нас, представим себе реальную ситуацию. Вообразите, что вы находитесь на природе в ясную безоблачную ночь и городских огней не заметно даже на горизонте. Что вы увидите, если взглянете на небо? В целях этого мысленного эксперимента давайте наградим себя идеальным зрением, бесконечно чувствительным ко всем разнообразным формам электромагнитного излучения.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное