Каждому известен практический смысл данного уравнения: даже небольшой объем вещества, обладающего массой, эквивалентен огромному запасу энергии (по сравнению со значениями, с которыми мы имеем дело в обычной жизни, скорость света – огромное число). Существует много разных форм энергии, и специальная теория относительности утверждает, что масса – это одна из форм, которую может принимать энергия. Энергия может переходить из одной формы в другую и обратно, и это происходит постоянно. Область применения формулы
Основным стимулом к разработке специальной теории относительности стали не труднообъяснимые результаты экспериментов (хотя эксперимент Майкельсона – Морли, определенно, относится к этой категории), а очевидный конфликт между двумя существовавшими теоретическими подходами.[72]
С одной стороны, у нас была ньютоновская механика – основа всего, что мы знали о физических законах, на базе которой строились последующие теории, с другой – предложенная в середине XIX века Джеймсом Клерком Максвеллом теория, объединяющая электричество и магнетизм, которая объяснила впечатляющий диапазон экспериментальных явлений. Проблема заключалась лишь в том, что эти две удивительно успешные теории не сочетались друг с другом. Ньютоновская механика подразумевала, что относительная скорость двух объектов, движущихся мимо друг друга, всегда равна векторной сумме их скоростей; максвелловский электромагнетизм утверждал, что скорость света – исключение из этого правила. Специальная теория относительности сумела объединить эти две теории в единое целое, предоставив новый формализм для механики, где скорость света действительно занимает особое место, а медленные частицы все так же подчиняются правилам ньютоновской модели.Триумф специальной теории относительности, как и многих других идей, кардинально поменявших актуальную картину мира, имел свою цену. В данном случае теория тяготения, безупречно объяснявшая движение планет, – величайший успех ньютоновской физики – оказалась выброшенной на обочину. Поскольку гравитация, как и электромагнетизм, – самая очевидная сила во Вселенной, Эйнштейн поставил себе целью описать ее на языке теории относительности. Казалось бы, это должно было означать модификацию пары-тройки уравнений, для того чтобы согласовать формулу Ньютона с инвариантностью относительно буста, однако попытки проследовать по этому пути печальнейшим образом провалились.
В конечном итоге Эйнштейна, конечно же, осенила блестящая догадка. По сути, это произошло благодаря тому же эксперименту с космическим кораблем, который мы рассматривали в предыдущей главе (он придумал его первым). Описывая наше путешествие в этом гипотетическом изолированном корабле, я специально несколько раз упомянул, что мы находимся вдалеке от любых гравитационных полей, поэтому нам не приходится беспокоиться о возможности падения на звезду или о том, что наши зонды притянет к себе ближайшая планета. Однако как изменились бы условия задачи, если бы мы находились поблизости от сильного гравитационного поля? Представьте себе, что наш корабль кружит по околоземной орбите. Как бы это повлияло на эксперименты, проводимые внутри космического судна?