Обратившись вновь к рис. 6.2, легко понять, почему все эти решения включают вращение того или иного рода: недостаточно всего лишь наклонить световые конусы, нужно «положить их на бок», выстроив в замкнутую цепочку. Итак, если сесть и подумать, как же создать в пространстве – времени замкнутую времениподобную кривую, то первым делом на ум приходит какой-нибудь вращающийся объект – если не бесконечный цилиндр или черная дыра, то, возможно, достаточно длинный цилиндр или всего лишь массивная звезда. Результат может быть еще более впечатляющим, если взять два гигантских массивных тела и запустить их навстречу друг другу с громадной относительной скоростью. А затем, если повезет, гравитационное притяжение этих тел в достаточной степени повлияет на ориентацию окружающих их световых конусов, чтобы сформировать замкнутую времениподобную кривую.
Все это как-то слишком просто. Действительно, мы немедленно сталкиваемся с различными сложностями. Общая теория относительности – сложная штука, причем не только концептуально, но и технически; уравнения, описывающие искривление пространства – времени, невероятно сложны для решения в любой ситуации, возникающей в реальном мире. Все известные нам точные предсказания теории связаны с сильно идеализированными случаями, обладающими высокой симметрией, такими как статическая звезда или совершенно однородная Вселенная. Расчет кривизны пространства – времени, образовавшейся в результате пролета двух черных дыр мимо друг друга со скоростью, близкой к скорости света, лежит за пределами наших возможностей (хотя методы расчетов улучшаются с каждым днем).
С целью сильного упрощения мы можем задать вопрос, что произойдет, если два массивных объекта пройдут близко друг от друга на высокой относительной скорости, но во Вселенной с
Отбрасывая для простоты одно измерение пространства, мы совершаем достойный признания шаг. Эдвин Э. Эббот в своем романе «Флатландия» описывал существ, живущих в двумерном пространстве. Он пытался показать, что и в нашем мире может быть
Рассмотрим ситуацию, показанную на рис. 6.5: два массивных объекта с высокой скоростью проносятся мимо друг друга во Флатландии. В трехмерной Вселенной прекрасно то, что в ней уравнение Эйнштейна упрощается на несколько порядков, позволяя найти точное решение задачи, которая в реальной четырехмерной Вселенной была бы невообразимо сложной. В 1991 году астрофизик Ричард Готт закатал рукава и рассчитал искривление пространства – времени для этой ситуации. В частности, он обнаружил, что во Флатландии тяжелые объекты, проходя мимо друг друга,
Рис. 6.5.
Машина времени Готта во Флатландии. Если два объекта пройдут мимо друг друга с достаточно высокой относительной скоростью, то возникнет замкнутая времениподобная кривая, обозначенная на рисунке пунктирной линией. Обратите внимание, что показанная здесь плоскость на самом деле двумерная – это не проекция трехмерного пространства