Физика шахматной доски A
обладает определенной степенью симметрии, например инвариантностью относительно сдвига по времени. Это означает, что законы физики не меняются во времени от момента к моменту. Мы можем сместить точку наблюдения вперед или назад во времени (вверх или вниз по столбцам), но правило «квадратик прямо над текущим находится точно в таком же состоянии» продолжит выполняться.[113] Симметрии так и работают: вы что-то делаете, но это ничего не меняет – правила продолжают действовать, как и раньше. Мы уже говорили о том, что реальный мир также инвариантен относительно сдвига по времени: с течением времени законы физики не меняются.Кроме того, на шахматной доске A
можно заметить еще один вид симметрии – инвариантность относительно обращения времени. Смысл такого вида симметрии очевиден: мы заставляем время идти в обратную сторону и наблюдаем за происходящим. Если результат «выглядит точно так же» – то есть создается впечатление, что «перевернутая» система подчиняется тем же законам физики, что и первоначальная расстановка, – то мы говорим, что действующие в системе правила инвариантны относительно обращения времени. Для того чтобы проверить это на шахматной доске, нужно зеркально отразить ее, выбрав осью симметрии какую-нибудь строку. При условии, что действующие на шахматной доске правила также инвариантны относительно сдвига по времени, совершенно неважно, какую строку мы выберем, так как они все равны. Если правила, с помощью которых мы описывали исходную расстановку, так же действуют в новом шаблоне, то можно утверждать, что шахматная доска инвариантна относительно обращения времени. Очевидно, что образец A, в котором каждый столбец содержит квадратики только одного цвета, обладает данным типом инвариантности: отраженный шаблон не только подчиняется тем же правилам, он еще и стопроцентно совпадает с исходным.Для того чтобы лучше прочувствовать идею, давайте рассмотрим более интересный пример. На рис. 7.4 показан еще один мир шахматной доски, обозначенный B
. Теперь мы видим два разных шаблона размещения серых квадратиков: диагональные линии, идущие в обоих направлениях (получившийся рисунок немного напоминает световые конусы, не правда ли?). И снова мы можем описать получившуюся схему размещения серых и белых квадратиков в терминах развития от одного момента времени к следующему. Нужно только не забывать о том, что в каждой конкретной строке нам недостаточно отслеживать цвет одного-единственного квадратика. Мы обязаны следить за тем, какие типы диагональных линий из серых квадратиков проходят через эту точку (и проходят ли вообще). Каждую клетку можно пометить одним из четырех состояний: «белая», «диагональная линия серых квадратиков проходит вверх и вправо», «диагональная линия серых квадратиков проходит вверх и влево», «диагональная линия серых квадратиков проходит в обе стороны». Если мы опишем любую произвольную строку всего лишь как последовательность нулей и единиц, этого будет недостаточно, чтобы понять, как будет выглядеть следующая строка.[114] Все выглядит так, будто мы обнаружили в рассматриваемой Вселенной два типа «частиц»: одни движутся всегда только налево, а другие – только направо, причем частицы разных типов никак не взаимодействуют между собой и не влияют друг на друга.Что произойдет с шахматной доской B
, если мы поменяем направление времени на обратное? Суть этого шахматного мира останется прежней, однако фактическое расположение белых и серых квадратиков, разумеется, изменится (в отличие от шахматной доски A, где вне зависимости от направления времени мы получали один и тот же набор белых и серых клеток). На второй панели рис. 7.4, обозначенной B', показан результат зеркального отражения относительно одной из строк шахматной доски B. В частности, диагональные линии, проходившие из левого нижнего угла в правый верхний, теперь протянулись из левого верхнего в правый нижний, и наоборот.
Рис. 7.4.
Шахматная доска B (слева) характеризуется чуть более сложной динамикой, чем шахматная доска A: в этом примере диагональные линии, состоящие из серых квадратиков, следуют в обоих направлениях. Шахматная доска B' (справа) иллюстрирует результат обращения времени на доске B относительно центральной строки