Читаем Вечность. В поисках окончательной теории времени полностью

Физика шахматной доски A обладает определенной степенью симметрии, например инвариантностью относительно сдвига по времени. Это означает, что законы физики не меняются во времени от момента к моменту. Мы можем сместить точку наблюдения вперед или назад во времени (вверх или вниз по столбцам), но правило «квадратик прямо над текущим находится точно в таком же состоянии» продолжит выполняться.[113] Симметрии так и работают: вы что-то делаете, но это ничего не меняет – правила продолжают действовать, как и раньше. Мы уже говорили о том, что реальный мир также инвариантен относительно сдвига по времени: с течением времени законы физики не меняются.

Кроме того, на шахматной доске A можно заметить еще один вид симметрии – инвариантность относительно обращения времени. Смысл такого вида симметрии очевиден: мы заставляем время идти в обратную сторону и наблюдаем за происходящим. Если результат «выглядит точно так же» – то есть создается впечатление, что «перевернутая» система подчиняется тем же законам физики, что и первоначальная расстановка, – то мы говорим, что действующие в системе правила инвариантны относительно обращения времени. Для того чтобы проверить это на шахматной доске, нужно зеркально отразить ее, выбрав осью симметрии какую-нибудь строку. При условии, что действующие на шахматной доске правила также инвариантны относительно сдвига по времени, совершенно неважно, какую строку мы выберем, так как они все равны. Если правила, с помощью которых мы описывали исходную расстановку, так же действуют в новом шаблоне, то можно утверждать, что шахматная доска инвариантна относительно обращения времени. Очевидно, что образец A, в котором каждый столбец содержит квадратики только одного цвета, обладает данным типом инвариантности: отраженный шаблон не только подчиняется тем же правилам, он еще и стопроцентно совпадает с исходным.

Для того чтобы лучше прочувствовать идею, давайте рассмотрим более интересный пример. На рис. 7.4 показан еще один мир шахматной доски, обозначенный B

. Теперь мы видим два разных шаблона размещения серых квадратиков: диагональные линии, идущие в обоих направлениях (получившийся рисунок немного напоминает световые конусы, не правда ли?). И снова мы можем описать получившуюся схему размещения серых и белых квадратиков в терминах развития от одного момента времени к следующему. Нужно только не забывать о том, что в каждой конкретной строке нам недостаточно отслеживать цвет одного-единственного квадратика. Мы обязаны следить за тем, какие типы диагональных линий из серых квадратиков проходят через эту точку (и проходят ли вообще). Каждую клетку можно пометить одним из четырех состояний: «белая», «диагональная линия серых квадратиков проходит вверх и вправо», «диагональная линия серых квадратиков проходит вверх и влево», «диагональная линия серых квадратиков проходит в обе стороны». Если мы опишем любую произвольную строку всего лишь как последовательность нулей и единиц, этого будет недостаточно, чтобы понять, как будет выглядеть следующая строка.[114] Все выглядит так, будто мы обнаружили в рассматриваемой Вселенной два типа «частиц»: одни движутся всегда только налево, а другие – только направо, причем частицы разных типов никак не взаимодействуют между собой и не влияют друг на друга.

Что произойдет с шахматной доской B, если мы поменяем направление времени на обратное? Суть этого шахматного мира останется прежней, однако фактическое расположение белых и серых квадратиков, разумеется, изменится (в отличие от шахматной доски A, где вне зависимости от направления времени мы получали один и тот же набор белых и серых клеток). На второй панели рис. 7.4, обозначенной

B', показан результат зеркального отражения относительно одной из строк шахматной доски B. В частности, диагональные линии, проходившие из левого нижнего угла в правый верхний, теперь протянулись из левого верхнего в правый нижний, и наоборот.



Рис. 7.4. Шахматная доска B (слева) характеризуется чуть более сложной динамикой, чем шахматная доска A: в этом примере диагональные линии, состоящие из серых квадратиков, следуют в обоих направлениях. Шахматная доска B' (справа) иллюстрирует результат обращения времени на доске B относительно центральной строки




Перейти на страницу:

Похожие книги

Нейрогастрономия. Почему мозг создает вкус еды и как этим управлять
Нейрогастрономия. Почему мозг создает вкус еды и как этим управлять

Про еду нам важно знать все: какого она цвета, какова она на запах и вкус, приятны ли ее текстура и температура. Ведь на основе этих знаний мы принимаем решение о том, стоит или не стоит это есть, удовлетворит ли данное блюдо наши физиологические потребности. На восприятие вкуса влияют практически все ощущения, которые мы испытываем, прошлый опыт и с кем мы ели то или иное блюдо.Нейрогастрономия (наука о вкусовых ощущениях) не пытается «насильно» заменить еду на более полезную, она направлена на то, как человек воспринимает ее вкус. Профессор Гордон Шеперд считает, что мы можем не только привыкнуть к более здоровой пище, но и не ощущать себя при этом так, будто постоянно чем-то жертвуем. Чтобы этого добиться, придется ввести в заблуждение мозг и заставить его думать, например, что вареное вкуснее жареного. А как это сделать – расскажет автор книги.Внимание! Информация, содержащаяся в книге, не может служить заменой консультации врача. Перед совершением любых рекомендуемых действий необходимо проконсультироваться со специалистом.В формате PDF A4 сохранён издательский дизайн.

Гордон Шеперд

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Медицина и здоровье / Дом и досуг